25.10.2020

low frequency waves. Presentation on the topic "scale of electromagnetic waves" Presentation on the topic of low-frequency radiation


This presentation helps the teacher to more clearly conduct a lesson-lecture in the 11th grade in physics while studying the topic "Radiations and Spectra". Introduces students to various types of spectra, spectral analysis, the scale of electromagnetic radiation.

Download:

Preview:

To use the preview of presentations, create an account for yourself ( account) Google and sign in: https://accounts.google.com


Slides captions:

Radiation and Spectra Kazantseva T.R. physics teacher of the highest category MKOU Lugovskoy secondary school of the Zonal district Altai Territory Lesson - lecture Grade 11

All that we see is only one visibility, Far from the surface of the world to the bottom. Consider the obvious in the world unimportant, For the secret essence of things is not visible. Shakespeare

1. Introduce students to various types of radiation, their sources. 2. Show different types spectra, their practical use. 3. Scale of electromagnetic radiation. Dependence of the properties of radiation on frequency, wavelength. Lesson Objectives:

Light sources Cold Hot electroluminescence photoluminescence cathodoluminescence fluorescent lamps gas discharge tubes St. Elmo's fires auroras glow of plasma TV screens phosphor paints glow of CRT TV screens some deep-sea fish microorganisms Sun incandescent lamp flame fireflies corpse gases thermal chemiluminescence

This is the radiation of heated bodies. Thermal radiation, according to Maxwell, is due to fluctuations in electric charges in the molecules of the substance that make up the body. thermal radiation

Electroluminescence During a discharge in gases, the electric field informs the electrons of a large kinetic energy. Part of the energy goes to the excitation of atoms. Excited atoms give off energy in the form of light waves.

Cathodoluminescence The glow of solids caused by their bombardment by electrons.

Chemiluminescence Radiation that accompanies certain chemical reactions. The light source remains cold.

Sergei Ivanovich Vavilov is a Russian physicist. Born March 24, 1891 in Moscow, Sergei Vavilov at the Institute of Physics and Biophysics began experiments on optics - the absorption and emission of light by elementary molecular systems. Vavilov studied the main regularities of photoluminescence. Vavilov, his staff and students carried out practical use luminescence: luminescence analysis, luminescence microscopy, the creation of economical luminescent light sources, screens Photoluminescence Some bodies themselves begin to glow under the action of radiation incident on them. Luminous paints, toys, fluorescent lamps.

The density of radiated energy by heated bodies, according to Maxwell's theory, should increase with increasing frequency (with decreasing wavelength). However, experience shows that at high frequencies (short wavelengths) it decreases. An absolutely black body is a body that completely absorbs the energy incident on it. There are no absolutely black bodies in nature. Soot and black velvet absorb the greatest energy. Energy distribution in the spectrum

Instruments with which a clear spectrum can be obtained, which can then be examined, are called spectral instruments. These include a spectroscope, a spectrograph.

Types of spectra 2. Striped in the gaseous molecular state, 1. Linear in the gaseous atomic state, H H 2 3. Continuous or continuous bodies in the solid and liquid state, highly compressed gases, high-temperature plasma

A continuous spectrum is emitted by heated solids. The continuous spectrum, according to Newton, consists of seven sections - red, orange, yellow, green, blue, indigo and violet. Such a spectrum is also produced by high-temperature plasma. continuous spectrum

Consists of separate lines. Line spectra emit monatomic rarefied gases. The figure shows the spectra of iron, sodium and helium. line spectrum

A spectrum consisting of individual bands is called a striped spectrum. Striped spectra are emitted by molecules. Striped Spectra

Absorption spectra - spectra obtained during the passage and absorption of light in a substance. The gas absorbs most intensively the light of precisely those wavelengths that it itself emits in a highly heated state. Absorption spectra

Spectral analysis The atoms of any chemical element give a spectrum that is not similar to the spectra of all other elements: they are able to emit a strictly defined set of wavelengths. Method of determination chemical composition substances along its spectrum. Spectral analysis is used to determine the chemical composition of fossil ores during mining, to determine the chemical composition of stars, atmospheres, planets; is the main method for monitoring the composition of a substance in metallurgy and mechanical engineering.

Visible light is electromagnetic waves in the frequency range perceived by the human eye (4.01014-7.51014 Hz). Wavelength from 760 nm (red) to 380 nm (violet). The range of visible light is the narrowest in the entire spectrum. The wavelength in it changes less than twice. Visible light accounts for the maximum radiation in the spectrum of the Sun. Our eyes in the course of evolution have adapted to its light and are able to perceive radiation only in this narrow part of the spectrum. Mars in visible light Visible light

Electromagnetic radiation invisible to the eye in the wavelength range from 10 to 380 nm Ultraviolet radiation is capable of killing pathogenic bacteria, so it is widely used in medicine. UV radiation included sunlight causes biological processes that lead to darkening of human skin - sunburn. Discharge lamps are used as sources of ultraviolet radiation in medicine. The tubes of such lamps are made of quartz, transparent to ultraviolet rays; therefore these lamps are called quartz lamps. Ultraviolet radiation

This is electromagnetic radiation invisible to the eye, the wavelengths of which are in the range from 8∙10 -7 to 10 -3 m Photograph of the head in infrared radiation Blue areas are colder, yellow areas are warmer. Areas of different colors differ in temperature. Infrared radiation

Wilhelm Conrad Roentgen is a German physicist. Born March 27, 1845 in the city of Lennep, near Düsseldorf. Roentgen was the largest experimenter, he conducted many experiments unique for his time. Roentgen's most significant achievement was his discovery of the X-rays, which now bear his name. This discovery of Roentgen radically changed the idea of ​​the scale of electromagnetic waves. Beyond the violet border of the optical part of the spectrum and even beyond the border of the ultraviolet region, a region of even shorter wavelength electromagnetic radiation was found, adjoining further to the gamma range. X-rays

When X-rays pass through a substance, the intensity of the radiation decreases due to scattering and absorption. X-rays are used in medicine to diagnose diseases and to treat certain diseases. X-ray diffraction makes it possible to study the structure of crystalline solids. X-rays are used to control the structure of products, to detect defects.

The scale of electromagnetic waves includes a wide range of waves from 10 -13 to 10 4 m. Electromagnetic waves are divided into ranges according to various criteria (method of production, method of registration, interaction with matter) into radio and microwaves, infrared radiation, visible light, ultraviolet radiation, x-rays and gamma rays. Despite the difference, all electromagnetic waves have common properties: they are transverse, their speed in vacuum is equal to the speed of light, they carry energy, are reflected and refracted at the interface between media, exert pressure on bodies, their interference, diffraction and polarization are observed. Electromagnetic wave scale

Wave ranges and sources of their radiation

Thank you for your attention! Homework: 80, 84-86


SCALE OF ELECTROMAGNETIC EMISSIONS 11th grade student Ani Yegyan

All information from stars, nebulae, galaxies and other astronomical objects comes in the form of electromagnetic radiation. Electromagnetic radiation

The lengths of electromagnetic waves of the radio range are in the range from 10 km to 0.001 m (1 mm). The range from 1 mm to visible radiation is called the infrared range. Electromagnetic waves with a wavelength shorter than 390 nm are called ultraviolet waves. Finally, in the shortest wavelength part of the spectrum lies X-ray and gamma radiation.

Radiation intensity

Any radiation can be considered as a stream of quanta - photons propagating at the speed of light equal to c = 299 792 458 m/s. The speed of light is related to the wavelength and frequency by the relation c = λ ∙ ν

The energy of light quanta E can be found by knowing its frequency: E = h ν , where h is Planck's constant equal to h ≈ 6.626∙10 –34 J∙s. The quantum energy is measured in joules or electron volts: 1 eV = 1.6 ∙ 10 -19 J. A quantum with an energy of 1 eV corresponds to a wavelength λ = 1240 nm. The human eye perceives radiation whose wavelength is in the range from λ = 390 nm (violet light) to λ = 760 nm (red light). This is the visible range.

It is customary to distinguish low-frequency radiation, radio radiation, infrared rays, visible light, ultraviolet rays, X-rays and g-radiation. With all these radiations, except for g-radiation, you are already familiar. The shortest-wavelength g-radiation is emitted by atomic nuclei. There is no fundamental difference between the individual radiations. All of them are electromagnetic waves generated by charged particles. Electromagnetic waves are finally detected by their action on charged particles. The boundaries between individual areas of the radiation scale are very arbitrary. Radiations of different wavelengths differ from each other in the method of their production (radiation from an antenna, thermal radiation, radiation during deceleration of fast electrons, etc.) and methods of registration.

As the wavelength decreases, quantitative differences in wavelengths lead to significant qualitative differences.

radio waves

Radio waves Wavelength (m) 10 5 - 10 -3 Frequency (Hz) 3 10 3 - 3 10 11 Energy (EV) 1.24 10-10 - 1.24 10 -2 Source Oscillating circuit Macroscopic vibrators Receiver Sparks in the gap of the receiving vibrator Glow of a gas-discharge tube, coherer Discovery history Feddersen (1862), Hertz (1887), Popov, Lebedev, Rigi telephone communications, radio broadcasting, radio navigation Medium - Radiotelegraphy and radiotelephone communications radio broadcasting, radio navigation Short - amateur radio communications VHF - space radio communications UHF - television, radar, radio relay communications, cellular telephone communications SMV - radar, radio relay communications, astronavigation, satellite television MMV - radar

Infrared Wavelength (m) 2 10 -3 - 7.6 10 -7 Frequency (Hz) 3 10 11 - 3 10 14 Energy (EV) 1.24 10 -2 - 1.65 Source Any heated body: a candle, a stove, a water heating battery, an electric incandescent lamp A person emits electromagnetic waves with a length of 9 10 -6 m Receiver Thermocouples, bolometers, photocells, photoresistors, photographic films History of the discovery Rubens and Nichols (1896), Application In forensic science, photographing terrestrial objects in fog and darkness, binoculars and sights for shooting in the dark, heating the tissues of a living organism (in medicine), drying wood and painted car bodies, alarms for the protection of premises, an infrared telescope,

x-ray radiation

Wavelength less than 0.01 nm. The highest energy radiation. It has a huge penetrating power, has a strong biological effect. Application: In medicine, production (gamma flaw detection). Gamma radiation

Gamma radiation has been registered from the Sun, active galactic nuclei, and quasars. But the most striking discovery in gamma-ray astronomy was made when gamma-ray bursts were detected. Distribution of gamma - flashes on the celestial sphere

The entire scale of electromagnetic waves is evidence that all radiation has both quantum and wave properties. Quantum and wave properties in this case do not exclude, but complement each other. The wave properties are more pronounced at low frequencies and less pronounced at high frequencies. Conversely, quantum properties are more pronounced at high frequencies and less pronounced at low frequencies. The shorter the wavelength, the more pronounced the quantum properties, and the longer the wavelength, the more pronounced the wave properties. All this confirms the law of dialectics (transition of quantitative changes into qualitative ones). Conclusion

Lesson Objectives:

Lesson type:

Conduct form: lecture with presentation

Karaseva Irina Dmitrievna, 17.12.2017

3355 349

Development content

Lesson summary on the topic:

Types of radiation. Electromagnetic wave scale

Lesson designed

teacher of the State Institution of the LPR "LOUSOSH No. 18"

Karaseva I.D.

Lesson Objectives: consider the scale of electromagnetic waves, characterize the waves of different frequency ranges; show the role of various types of radiation in human life, the impact of various types of radiation on a person; systematize the material on the topic and deepen students' knowledge of electromagnetic waves; develop oral speech students, creative skills of students, logic, memory; cognitive abilities; to form students' interest in the study of physics; to cultivate accuracy, diligence.

Lesson type: a lesson in the formation of new knowledge.

Conduct form: lecture with presentation

Equipment: computer, multimedia projector, presentation “Types of radiation.

Scale of electromagnetic waves»

During the classes

    Organizing time.

    Motivation of educational and cognitive activity.

The universe is an ocean of electromagnetic radiation. People live in it, for the most part, not noticing the waves penetrating the surrounding space. Warming by the fireplace or lighting a candle, a person forces the source of these waves to work, without thinking about their properties. But knowledge is power: having discovered the nature of electromagnetic radiation, mankind during the 20th century mastered and put to its service its most diverse types.

    Setting the topic and objectives of the lesson.

Today we will make a journey along the scale of electromagnetic waves, consider the types of electromagnetic radiation of different frequency ranges. Write down the topic of the lesson: “Types of radiation. Scale of electromagnetic waves» (Slide 1)

We will study each radiation according to the following generalized plan (Slide 2).Generalized plan for studying radiation:

1. Range name

2. Wavelength

3. Frequency

4. Who was discovered

5. Source

6. Receiver (indicator)

7. Application

8. Action on a person

During the study of the topic, you must complete the following table:

Table "Scale of electromagnetic radiation"

Name radiation

Wavelength

Frequency

Who was

open

Source

Receiver

Application

Action on a person

    Presentation of new material.

(Slide 3)

The length of electromagnetic waves is very different: from values ​​​​of the order of 10 13 m (low frequency vibrations) up to 10 -10 m ( -rays). Light is an insignificant part of the wide spectrum of electromagnetic waves. However, it was during the study of this small part of the spectrum that other radiations with unusual properties were discovered.
It is customary to allocate low frequency radiation, radio radiation, infrared rays, visible light, ultraviolet rays, x-rays and -radiation. The shortest -radiation emits atomic nuclei.

There is no fundamental difference between the individual radiations. All of them are electromagnetic waves generated by charged particles. Electromagnetic waves are detected, ultimately, by their action on charged particles . In a vacuum, radiation of any wavelength travels at a speed of 300,000 km/s. The boundaries between individual areas of the radiation scale are very arbitrary.

(Slide 4)

Emissions of various wavelengths differ from each other in the way they receiving(antenna radiation, thermal radiation, radiation during deceleration of fast electrons, etc.) and methods of registration.

All of the listed types of electromagnetic radiation are also generated by space objects and are successfully studied using rockets, artificial satellites of the Earth and spaceships. First of all, this applies to X-ray and radiation that is strongly absorbed by the atmosphere.

Quantitative differences in wavelengths lead to significant qualitative differences.

Radiations of different wavelengths differ greatly from each other in terms of their absorption by matter. Shortwave radiation (X-ray and especially rays) are weakly absorbed. Substances that are opaque to optical wavelengths are transparent to these radiations. The reflection coefficient of electromagnetic waves also depends on the wavelength. But the main difference between longwave and shortwave radiation is that shortwave radiation reveals the properties of particles.

Let's consider each radiation.

(Slide 5)

low frequency radiation occurs in the frequency range from 3 · 10 -3 to 3 10 5 Hz. This radiation corresponds to a wavelength of 10 13 - 10 5 m. The radiation of such relatively low frequencies can be neglected. The source of low-frequency radiation are alternators. They are used in melting and hardening of metals.

(Slide 6)

radio waves occupy the frequency range 3·10 5 - 3·10 11 Hz. They correspond to a wavelength of 10 5 - 10 -3 m. radio waves, as well as low frequency radiation is alternating current. Also, the source is a radio frequency generator, stars, including the Sun, galaxies and metagalaxies. The indicators are the Hertz vibrator, the oscillatory circuit.

Large frequency radio waves compared to low-frequency radiation leads to a noticeable radiation of radio waves into space. This allows them to be used to transmit information over various distances. Speech, music (broadcasting), telegraph signals (radio communication), images of various objects (radar) are transmitted.

Radio waves are used to study the structure of matter and the properties of the medium in which they propagate. The study of radio emission from space objects is the subject of radio astronomy. In radiometeorology, processes are studied according to the characteristics of received waves.

(Slide 7)

Infrared radiation occupies the frequency range 3 10 11 - 3.85 10 14 Hz. They correspond to a wavelength of 2 10 -3 - 7.6 10 -7 m.

Infrared radiation was discovered in 1800 by astronomer William Herschel. Studying the rise in temperature of a thermometer heated by visible light, Herschel found the greatest heating of the thermometer outside the visible light region (beyond the red region). Invisible radiation, given its place in the spectrum, was called infrared. The source of infrared radiation is the radiation of molecules and atoms under thermal and electrical influences. A powerful source of infrared radiation is the Sun, about 50% of its radiation lies in the infrared region. Infrared radiation accounts for a significant proportion (from 70 to 80%) of the radiation energy of incandescent lamps with a tungsten filament. infrared radiation emits electric arc and various gas discharge lamps. The radiation of some lasers lies in the infrared region of the spectrum. Indicators of infrared radiation are photo and thermistors, special photo emulsions. Infrared radiation is used to dry wood, food products and various paint coatings (infrared heating), for signaling in case of poor visibility, makes it possible to use optical devices that allow you to see in the dark, as well as with remote control. Infra-red beams are used to aim projectiles and missiles at the target, to detect a camouflaged enemy. These rays make it possible to determine the difference in temperatures of individual sections of the surface of the planets, the structural features of the molecules of a substance (spectral analysis). Infrared photography is used in biology in the study of plant diseases, in medicine in the diagnosis of skin and vascular diseases, in forensics in the detection of fakes. When exposed to a person, it causes an increase in the temperature of the human body.

(Slide 8)

Visible radiation - the only range of electromagnetic waves perceived by the human eye. Light waves occupy a fairly narrow range: 380 - 670 nm ( \u003d 3.85 10 14 - 8 10 14 Hz). The source of visible radiation is valence electrons in atoms and molecules that change their position in space, as well as free charges, moving rapidly. This part of the spectrum gives a person maximum information about the world around him. In terms of its physical properties, it is similar to other ranges of the spectrum, being only a small part of the spectrum of electromagnetic waves. Radiation having different wavelengths (frequencies) in the visible range has different physiological effects on the retina of the human eye, causing a psychological sensation of light. Color is not a property of an electromagnetic light wave in itself, but a manifestation of the electrochemical action of the human physiological system: eyes, nerves, brain. Approximately, there are seven primary colors that are distinguished by the human eye in the visible range (in ascending order of radiation frequency): red, orange, yellow, green, blue, indigo, violet. Remembering the sequence of the primary colors of the spectrum is facilitated by a phrase, each word of which begins with the first letter of the name of the primary color: "Every Hunter Wants to Know Where the Pheasant Sits." Visible radiation can influence the course of chemical reactions in plants (photosynthesis) and in animal and human organisms. Visible radiation is emitted by individual insects (fireflies) and some deep-sea fish due to chemical reactions in the body. The absorption of carbon dioxide by plants as a result of the process of photosynthesis and the release of oxygen contributes to the maintenance of biological life on Earth. Visible radiation is also used to illuminate various objects.

Light is the source of life on Earth and at the same time the source of our ideas about the world around us.

(Slide 9)

Ultraviolet radiation, electromagnetic radiation invisible to the eye, occupying the spectral region between visible and X-ray radiation within the wavelengths of 3.8 ∙10 -7 - 3∙10 -9 m ( \u003d 8 * 10 14 - 3 * 10 16 Hz). Ultraviolet radiation was discovered in 1801 by the German scientist Johann Ritter. By studying the blackening of silver chloride under the action of visible light, Ritter found that silver blackens even more effectively in the region beyond the violet end of the spectrum, where there is no visible radiation. The invisible radiation that caused this blackening was called ultraviolet.

The source of ultraviolet radiation is the valence electrons of atoms and molecules, also rapidly moving free charges.

The radiation of solids heated to temperatures of - 3000 K contains a significant fraction of continuous spectrum ultraviolet radiation, the intensity of which increases with increasing temperature. A more powerful source of ultraviolet radiation is any high-temperature plasma. For various applications of ultraviolet radiation, mercury, xenon, and other gas discharge lamps are used. Natural sources of ultraviolet radiation - the Sun, stars, nebulae and other space objects. However, only the long-wavelength part of their radiation ( 290 nm) reaches the earth's surface. For registration of ultraviolet radiation at

 = 230 nm, ordinary photographic materials are used; in the shorter wavelength region, special low-gelatin photographic layers are sensitive to it. Photoelectric receivers are used that use the ability of ultraviolet radiation to cause ionization and the photoelectric effect: photodiodes, ionization chambers, photon counters, photomultipliers.

In small doses, ultraviolet radiation has a beneficial, healing effect on a person, activating the synthesis of vitamin D in the body, and also causing sunburn. A large dose of ultraviolet radiation can cause skin burns and cancerous growths (80% curable). In addition, excessive ultraviolet radiation weakens the body's immune system, contributing to the development of certain diseases. Ultraviolet radiation also has a bactericidal effect: under the influence of this radiation, pathogenic bacteria.

Ultraviolet radiation is used in fluorescent lamps, in forensics (forgery of documents is detected from the pictures), in art history (with the help of ultraviolet rays, traces of restoration invisible to the eye can be detected in the paintings). Practically does not pass ultra-violet radiation a window glass since. it is absorbed by iron oxide, which is part of the glass. For this reason, even on a hot sunny day, you cannot sunbathe in a room with the window closed.

The human eye does not see ultraviolet radiation, because. The cornea of ​​the eye and the eye lens absorb ultraviolet light. Some animals can see ultraviolet radiation. For example, a dove is guided by the Sun even in cloudy weather.

(Slide 10)

x-ray radiation - this is electromagnetic ionizing radiation occupying the spectral region between gamma and ultraviolet radiation within wavelengths from 10 -12 - 10 -8 m (frequencies 3 * 10 16 - 3-10 20 Hz). X-ray radiation was discovered in 1895 by the German physicist W. K. Roentgen. The most common X-ray source is the X-ray tube, in which electrons accelerated by an electric field bombard a metal anode. X-rays can be obtained by bombarding a target with high-energy ions. Some radioactive isotopes, synchrotrons - electron accumulators can also serve as sources of X-ray radiation. The natural sources of X-rays are the Sun and other space objects.

Images of objects in x-rays are obtained on a special x-ray photographic film. X-ray radiation can be recorded using an ionization chamber, a scintillation counter, secondary electron or channel electron multipliers, and microchannel plates. Due to its high penetrating power, X-rays are used in X-ray diffraction analysis (the study of the structure of the crystal lattice), in the study of the structure of molecules, the detection of defects in samples, in medicine (X-rays, fluorography, cancer treatment), in flaw detection (detection of defects in castings, rails) , in art history (the discovery of ancient paintings hidden under a layer of late painting), in astronomy (when studying X-ray sources), and forensic science. A large dose of X-ray radiation leads to burns and changes in the structure of human blood. The creation of X-ray receivers and their placement on space stations made it possible to detect the X-ray emission of hundreds of stars, as well as the shells of supernovae and entire galaxies.

(Slide 11)

Gamma radiation - short-wave electromagnetic radiation, occupying the entire frequency range  \u003d 8 10 14 - 10 17 Hz, which corresponds to wavelengths  \u003d 3.8 10 -7 - 3 10 -9 m. Gamma radiation was discovered by the French scientist Paul Villars in 1900.

Studying the radiation of radium in a strong magnetic field, Villars discovered short-wave electromagnetic radiation, which, like light, is not deflected by a magnetic field. It was called gamma radiation. Gamma radiation is associated with nuclear processes, the phenomena of radioactive decay that occur with certain substances, both on Earth and in space. Gamma radiation can be recorded using ionization and bubble chambers, as well as using special photographic emulsions. They are used in the study of nuclear processes, in flaw detection. Gamma radiation has a negative effect on humans.

(Slide 12)

So, low frequency radiation, radio waves, infrared radiation, visible radiation, ultraviolet radiation, X-rays, radiation are different kinds electromagnetic radiation.

If you mentally decompose these types in terms of increasing frequency or decreasing wavelength, you get a wide continuous spectrum - the scale of electromagnetic radiation (teacher shows the scale). Hazardous types of radiation include: gamma radiation, x-rays and ultraviolet radiation, the rest are safe.

The division of electromagnetic radiation into ranges is conditional. There is no clear boundary between regions. The names of the regions have developed historically, they only serve as a convenient means of classifying radiation sources.

(Slide 13)

All ranges of the electromagnetic radiation scale have general properties:

    the physical nature of all radiation is the same

    all radiation propagates in vacuum with the same speed, equal to 3 * 10 8 m / s

    all radiations exhibit common wave properties (reflection, refraction, interference, diffraction, polarization)

5. Summing up the lesson

At the end of the lesson, students complete the work on the table.

(Slide 14)

Conclusion:

    The entire scale of electromagnetic waves is evidence that all radiation has both quantum and wave properties.

    Quantum and wave properties in this case do not exclude, but complement each other.

    The wave properties are more pronounced at low frequencies and less pronounced at high frequencies. Conversely, quantum properties are more pronounced at high frequencies and less pronounced at low frequencies.

    The shorter the wavelength, the more pronounced the quantum properties, and the longer the wavelength, the more pronounced the wave properties.

All this confirms the law of dialectics (transition of quantitative changes into qualitative ones).

    Abstract (learn), fill in the table

the last column (the effect of EMP on a person) and

prepare a report on the use of EMR

Development content


GU LPR "LOUSOSH No. 18"

Lugansk

Karaseva I.D.


GENERALIZED RADIATION STUDY PLAN

1. Range name.

2. Wavelength

3. Frequency

4. Who was discovered

5. Source

6. Receiver (indicator)

7. Application

8. Action on a person

TABLE "SCALE OF ELECTROMAGNETIC WAVES"

Radiation name

Wavelength

Frequency

Who opened

Source

Receiver

Application

Action on a person



Radiations differ from each other:

  • according to the method of obtaining;
  • registration method.

Quantitative differences in wavelengths lead to significant qualitative differences; they are absorbed by matter in different ways (short-wave radiation - X-ray and gamma radiation) - are absorbed weakly.

Shortwave radiation reveals the properties of particles.


Low frequency vibrations

Wave length (m)

10 13 - 10 5

Frequency Hz)

3 · 10 -3 - 3 · 10 5

Source

Rheostatic alternator, dynamo,

hertz vibrator,

generators in electrical networks(50 Hz)

Machine generators of increased (industrial) frequency (200 Hz)

Telephone networks (5000Hz)

Sound generators (microphones, loudspeakers)

Receiver

Electrical appliances and motors

Discovery history

Oliver Lodge (1893), Nikola Tesla (1983)

Application

Cinema, broadcasting (microphones, loudspeakers)


radio waves

Wavelength(m)

Frequency Hz)

10 5 - 10 -3

Source

3 · 10 5 - 3 · 10 11

Oscillatory circuit

Macroscopic vibrators

Stars, galaxies, metagalaxies

Receiver

Discovery history

Sparks in the gap of the receiving vibrator (Hertz vibrator)

The glow of a gas discharge tube, coherer

B. Feddersen (1862), G. Hertz (1887), A.S. Popov, A.N. Lebedev

Application

Extra long- Radio navigation, radiotelegraph communication, transmission of weather reports

Long– Radiotelegraph and radiotelephone communications, radio broadcasting, radio navigation

Medium- Radiotelegraphy and radiotelephony radio broadcasting, radio navigation

Short- amateur radio

VHF- space radio communications

DMV- television, radar, radio relay communication, cellular telephone communication

SMV- radar, radio relay communication, astronavigation, satellite television

IIM- radar


Infrared radiation

Wavelength(m)

2 · 10 -3 - 7,6∙10 -7

Frequency Hz)

3∙10 11 - 3,85∙10 14

Source

Any heated body: a candle, a stove, a water heating battery, an electric incandescent lamp

A person emits electromagnetic waves with a length of 9 · 10 -6 m

Receiver

Thermoelements, bolometers, photocells, photoresistors, photographic films

Discovery history

W. Herschel (1800), G. Rubens and E. Nichols (1896),

Application

In forensics, photographing terrestrial objects in fog and darkness, binoculars and sights for shooting in the dark, heating the tissues of a living organism (in medicine), drying wood and painted car bodies, alarms for the protection of premises, an infrared telescope.


Visible radiation

Wavelength(m)

6,7∙10 -7 - 3,8 ∙10 -7

Frequency Hz)

4∙10 14 - 8 ∙10 14

Source

Sun, incandescent lamp, fire

Receiver

Eye, photographic plate, photocells, thermoelements

Discovery history

M. Melloni

Application

Vision

biological life


Ultraviolet radiation

Wavelength(m)

3,8 ∙10 -7 - 3∙10 -9

Frequency Hz)

8 ∙ 10 14 - 3 · 10 16

Source

Included in sunlight

Discharge lamps with quartz tube

Radiated by all solids whose temperature is more than 1000 ° C, luminous (except mercury)

Receiver

photocells,

photomultipliers,

Luminescent substances

Discovery history

Johann Ritter, Leiman

Application

Industrial electronics and automation,

fluorescent lamps,

Textile production

Air sterilization

Medicine, cosmetology


x-ray radiation

Wavelength(m)

10 -12 - 10 -8

Frequency Hz)

3∙10 16 - 3 · 10 20

Source

Electronic X-ray tube (voltage at the anode - up to 100 kV, cathode - incandescent filament, radiation - high energy quanta)

solar corona

Receiver

Camera roll,

Glow of some crystals

Discovery history

W. Roentgen, R. Milliken

Application

Diagnosis and treatment of diseases (in medicine), Defectoscopy (control of internal structures, welds)


Gamma radiation

Wavelength(m)

3,8 · 10 -7 - 3∙10 -9

Frequency Hz)

8∙10 14 - 10 17

Energy(EV)

9,03 10 3 – 1, 24 10 16 Ev

Source

Radioactive atomic nuclei, nuclear reactions, processes of transformation of matter into radiation

Receiver

counters

Discovery history

Paul Villars (1900)

Application

Defectoscopy

Control technological processes

Research of nuclear processes

Therapy and diagnostics in medicine



GENERAL PROPERTIES OF ELECTROMAGNETIC RADIATIONS

physical nature

all radiation is the same

all radiation propagates

in a vacuum at the same speed,

equal to the speed of light

all radiations are detected

general wave properties

polarization

reflection

refraction

diffraction

interference


  • The entire scale of electromagnetic waves is evidence that all radiation has both quantum and wave properties.
  • Quantum and wave properties in this case do not exclude, but complement each other.
  • The wave properties are more pronounced at low frequencies and less pronounced at high frequencies. Conversely, quantum properties are more pronounced at high frequencies and less pronounced at low frequencies.
  • The shorter the wavelength, the more pronounced the quantum properties, and the longer the wavelength, the more pronounced the wave properties.

  • § 68 (read)
  • fill in the last column of the table (the effect of EMP on a person)
  • prepare a report on the use of EMR

Radio waves are produced using oscillatory circuits and microscopic vibrators. Obtained using oscillatory circuits and microscopic vibrators. radio waves of different frequencies and with different wavelengths are absorbed and reflected by media in different ways, exhibit the properties of diffraction and interference. Application: Radio communication, television, radar. Properties:


Infrared radiation (thermal) Radiated by atoms or molecules of substances. passes through some opaque bodies, as well as through rain, haze, snow, fog; produces a chemical action (photographic plates); being absorbed by the substance, heats it; invisible; capable of interference and diffraction phenomena; registered by thermal methods. Properties: Application: Night vision device, forensics, physiotherapy, in industry for drying products, wood, fruits.




1000°C, as well as luminous mercury vapor. Properties: high reactivity, invisibly, high penetrating power" title=" Ultraviolet radiation Sources: gas discharge lamps with quartz tubes. Radiated by all solids with t>1000°C, as well as luminous mercury vapor. Properties: high reactivity, invisible, high penetrating power" class="link_thumb"> 5 !} Ultraviolet radiation Sources: Discharge lamps with quartz tubes. Radiated by all solids with t > 1000°C, as well as luminous mercury vapor. Properties: high chemical activity, invisible, high penetrating power, kills microorganisms, in small doses it has a beneficial effect on the human body (sunburn), but in large doses it has a negative effect, changes the development of cells, metabolism. Application: in medicine, in industry. 1000°C, as well as luminous mercury vapor. Properties: high chemical activity, invisibly, large penetrating power "> 1000 ° C, as well as luminous mercury vapor. Properties: high chemical activity, invisibly, large penetrating power, kills microorganisms, in small doses it has a beneficial effect on the human body (tanning), but in large doses it has a negative effect, changes the development of cells, metabolism. Application: in medicine, in industry. "> 1000 ° C, as well as luminous mercury vapor. Properties: high reactivity, invisibly, high penetrating power" title=" Ultraviolet radiation Sources: gas discharge lamps with quartz tubes. Radiated by all solids with t>1000°C, as well as luminous mercury vapor. Properties: high reactivity, invisible, high penetrating power"> title="Ultraviolet radiation Sources: Discharge lamps with quartz tubes. Radiated by all solids with t > 1000°C, as well as luminous mercury vapor. Properties: high reactivity, invisible, large penetrating power"> !}


X-rays Sources: Emitted at high accelerations of electrons. Properties: interference, X-ray diffraction on a crystal lattice, high penetrating power. Irradiation in high doses causes radiation sickness. Application: in medicine for the purpose of diagnosing diseases internal organs, in industry to control the internal structure of various products.


Gamma radiation Sources: atomic nucleus (nuclear reactions) Properties: has a huge penetrating power, has a strong biological effect. Application: in medicine, manufacturing (gamma flaw detection) Application: in medicine, manufacturing (gamma flaw detection)


8


9


10


11 Radio waves Wavelength (m) Frequency (Hz) PropertiesRadio waves are absorbed and reflected differently by media and exhibit the properties of interference and diffraction. Source Oscillatory circuit Macroscopic vibrators History of discovery Feddersen (1862), Hertz (1887), Popov, Lebedev, Rigi communication radio broadcasting, radio navigation Short-amateur communications VHF-space radio communication


12 Infrared radiation Wavelength (m) , Frequency (Hz) Properties Passes through some opaque bodies, produces a chemical effect, invisible, capable of interference and diffraction phenomena, recorded by thermal methods Source Any heated body: candle, stove, water heating battery, electric incandescent lamp A person emits electromagnetic waves with a length of m History of the discovery Rubens and Nichols (1896), Application In forensic science, photographing terrestrial objects in fog and darkness, binoculars and sights for shooting in the dark, heating the tissues of a living organism (in medicine), drying wood and painted bodies cars, security alarm, infrared telescope,


13


14 Visible radiation Wavelength (m) 6, Frequency (Hz) Properties Reflection, refraction, affects the eye, capable of dispersion, interference, diffraction. Source Sun, incandescent lamp, fire Receiver Eye, photographic plate, solar cells, thermocouples History of discovery Melloni Application Vision Biological life


15 Ultraviolet radiation Wavelength (m) 3, Frequency (Hz) Properties High chemical activity, invisible, large penetrating power, kill microorganisms, change cell development, metabolism. Source Included in sunlight Discharge lamps with a quartz tube Emitted by all solids that have a temperature of more than 1000 ° C, luminous (except mercury) Discovery history Johann Ritter, Leiman Application Industrial electronics and automation, Fluorescent lamps, Textile production Air sterilization Medicine


16 X-ray radiation Wavelength (m) Frequency (Hz) Properties Interference, diffraction on a crystal lattice, high penetrating power - incandescent filament Anode material W, Mo, Cu, Bi, Co, Tl, etc. Η = 1-3%, radiation - high energy quanta) Solar corona Discovery history V. Roentgen, Milliken ApplicationDiagnostics and treatment of diseases (in medicine) , Defectoscopy (inspection of internal structures, welds)


17 Gamma - radiation Wavelength (m) 3, Frequency (Hz) Properties Has a huge penetrating power, has a strong biological effect SourceRadioactive atomic nuclei, nuclear reactions, processes of transformation of matter into radiation History of discovery ApplicationDefectoscopy; Control of technological processes in production Therapy and diagnostics in medicine

Ministry of Education and Youth Policy of the Chuvash Republic "The subjects of study, apparently, should be built not on individual disciplines, but on problems." IN AND. Vernadsky. Reflections of a naturalist. - M., 1977. Book. 2. P. 54. Subject: SCALE OF ELECTROMAGNETIC RADIATIONS The work was done by a student of the 10th grade of the secondary school No. 39 Ekaterina Gavrilova The work was checked by: a teacher of physics of the highest category Gavrilova Galina Nikolaevna Cheboksary - 2004 physical phenomena, thanks to which it is possible to penetrate into the essence of things in the science of inanimate nature 2. To explore the trends in the development of knowledge about electromagnetic radiation. 3. Supplement with new information the existing "school" scale of electromagnetic waves. 4. Prove the cognizability of the world and our development in it. 5. Conduct an analysis of the assimilation of information on the topic being studied by my peers. 6. Predict the result of studying the topic. Research progress Stage I. Study of literature: textbooks, encyclopedias, reference books, periodicals, Internet. II stage. Creating a project - presentations (slides No. 1-19). III stage. Learning Assimilation Study school course physics with innovations: Compilation of the questionnaire No. 1, No. 2. Familiarization of students with the questionnaire No. 1. 3. Familiarization of students with the project - presentation. 4. Familiarization of students with questionnaire No. 2. 5. Analysis of anonymous questionnaires (forecast, result). The sample type when working with the questionnaire is available. The number of respondents - 93 people. 6. Plotting. IV stage. Student's conclusions (slide No. 19). Cheboksary - 2004 3. Objectives of my research 1. 2. 3. 4. To reflect on the scale of electromagnetic waves the areas of action of "bioVCh", terragertic and torsion fields. Specify their sources, properties and application. Explore the influence of my cos this project- presentations on the assimilation of the material of the school physics course on the topic "Electromagnetic Scale" by my peers from school No. 39 and the music school (I course). Check the assumptions that the effectiveness of exam preparation increases when you get acquainted with my project. Cheboksary - 2004 4. Scale of electromagnetic waves - Visible light - Gamma rays - Infrared radiation - X-rays - Ultraviolet waves - Microwaves - Radio waves Cheboksary - 2004 5. Radiation sources Low-frequency waves High-frequency currents, alternating current generator, electrical machines. Radio waves Oscillatory circuit, Hertz vibrator, semiconductor devices, lasers. Medium and long wave AM radio antennas emitters. Ultrashort waves TV and FM radio antennas-emitters. Centimeter waves Radio-antennas-emitters. Bio - microwave Biological cells of living organisms (solitons on DNA). Infrared radiation Sun, electric lamps, space, mercury-quartz lamp, lasers, all heated bodies. Terahertz waves Electrical circuit with fast particle oscillations, over hundreds of billions (10 10) per second. Visible rays Sun, electric lamp, fluorescent lamp, laser, electric arc. Ultraviolet radiation Space, sun, laser, electric lamp. X-rays Celestial bodies, solar corona, betatrons, lasers, X-ray tubes. Gamma rays Space, radioactive decay, betatron. Cheboksary - 2004 6. Wavelength scale and distribution on the radiation area Infrared radiation, nm 15000 10000 8000 6000 4000 2000 1500 1000 760 E, eV 0.08 0.12 0.16 0.21 0.31 0.62 0.83 1.24 1.63 Visible radiation red orange yellow green blue blue violet, nm 760 620 590 560 500 4130 450 380 E, eV 1.63 2.00 2.10 2.23 2.48 2.59 2.76 3 .27 Ultraviolet radiation, nm 380 350 300 250 200 E, eV 3.27 3.55 4.14 4.97 6.21 Cheboksary - 2004 E (eV) 1242 (nm) 7. Classification of radio waves Name of radio waves Frequency range, = [Hertz = Hz = 1/s] Wavelength range, [ = meter = m]< 3*104 СВЫШЕ 10 000 Длинные 3*104 - 3*105 10 000 – 1000 Средние 3*105 - 3*106 1000 – 100 Короткие 3*106 - 3*107 100 – 10 УКВ. Метровые 3*107 - 3*108 10 – 1 УКВ. Дециметровые 3*108 - 3*109 1 – 0,1 УКВ. Сантиметровые 3*109 - 3*1010 0,1 – 0,01 УКВ. Миллиметровые 3*1010 - 3*1011 0,01 – 0,001 УКВ. Микроволновые 3*1011 - 3*1012 0,001 – 0,000 001 Сверхдлинные Чебоксары - 2004 Сведения УВЧ –терапия, СВЧ – терапия, эндорадиозонды Используются в телеграфии, радиовещании, телевидении, радиолокации. Используются для исследования свойств вещества. Получают в магнитронных, клистронных генераторах и мазерах. Применяются в радиолокации, радиоспектроскопии и радиоастрономии. Диагностика с помощью картирования тепловых полей организма 8. Область действия «био – СВЧ» ! =9,8 нм. Область действия «био-СВЧ» - вся шкала электромагнитных волн. Пик максимального воздействия при =9,8 нм. В 26 лет китайский врач Цзян Каньчжена, который параллельно с медициной занимался кибернетикой, квантовой механикой, радиотехникой, в1959 году высказал гипотезу: «В процессе жизнедеятельности любого организма его атомы и молекулы обязательно связаны между собой единым носителем энергии и информации – биоэлектромагнитным полем» в работе «Теория управления полями», где обосновал возможность прямой передачи информации от одного мозга к другому с помощью радио волн. Каеьчжен фокусировал с помощью линзы из диэлектрика электромагнитное излучение мозга оператора-индуктора, а затем пропускал через чувствительный усилитель, собственной конструкции, направлял на реципиента. 90% реципиентов утверждали, что возникающие у них образы становились чрезвычайно четкими. Такая система пропускала электромагнитные волны только сверхвысокой частоты, следовательно существование био-СВЧ-связи можно было считать доказанным. В 1987 году в Советском Союзе доктор Цзян поставил опыт на себе, позже метод омоложения захотел проверить на себе его 80-летний отец, в результате исчезли 20-30 летние хронические заболевания, аллергический зуд, шум в ушах, доброкачественная опухоль. На месте лысины через полгода выросли волосы, а седые стали черными. Через год вырос зуб на месте выпавшего 20 лет назад. Способы лечения рака и СПИДа привели в 1991году к изобретению: «Способ регулирования иммунологических реакций в области борьбы с раком и трансплантации органов». При передаче интегральной информации, считанной с ДНК донора на всю ДНК реципиента возможен не только положительный, но и отрицательный эффект в виде куроуток, козокроликов и мух с глазами по всему телу, лапкам и усикам. Поэтому метод переброски генетической информации полевым путем требует дальнейших углубленных исследований и всеобщей научной поддержки. Чебоксары - 2004 9. Свойства электромагнитных излучений Низкочастотные волны Невидимы. Волновые свойства сильно проявлены, намагничивают ферромагнитные материалы, поглощаются воздухом слабо. Радиоволны Невидимы. Подразделяются на диапазоны: сверхдлинные, длинные, средние, короткие, УКВ – ултракороткие (метровые, деци-, санти-, миллиметровые).При действии на вещество поляризуют диэлектрики, способствуют возникновению токов проводимости в биологических жидкостях. Средние и длинные волны Невидимы. Хорошо распростронаются в воздухе, отражаются от облаков и атмосферы. Ультракороткие волны Невидимы. TV и FM радио волны проходят сквозь ионосферу без отражения от неё. Сантиметровые волны Невидимы. Проходят сквозь ионосферу без отражения от неё. Био - СВЧ Невидимы. Выполняют свойства сверхвысокочастотных электромагнитных волн. Инфракрасное излучение При действии на вещество усиливаются фотобиологические процессы. У живых организмов активизируются терморецепторы. Невидимы. Хорошо поглощается телами, изменяет электрическое сопротивление тел, действует на термоэлементы, фотоматериалы, проявляет волновые свойства, хорошо проходит через туман, другие непрозрачные тела, невидимо. Терагерцовые волны При действии на вещество усиливаются фотобиологические процессы. Огибают препятствия (кристаллические решётки), фокусируются, с их помощью можно заглянуть в глубь живого организма, не нанося ему ущерба. Сочетают качества излучений соседних диапазонов. Видимые лучи При действии на вещество усиливаются фотобиологические процессы. Способствуют фотосинтезу растений, фотоэффекту в металлах и полупроводниках, появлению свободных электронов. Преломляются, отражаются, интерферируют, дифрагируют, разлагаются в спектр. Делают видимыми окружающие предметы, активизируют зрительные рецепторы. Ультрафиолетовые излучение При действии на вещество усиливаются фотобиологические процессы. Невидимо, в малых дозах лечебно, оказывает бактерицидные воздействия, вызывает фотохимические реакции, поглощается озоном, действует на фотоэлементы, фотоумножители, люминесцентные вещества. Рентгеновские лучи При действии на вещество дают когерентное рассеяние., ионизацию, фото- и камптон-эффекты. Невидимы. Обладают большой проникающей способностью, вызывают люминесценцию, активно воздействуют на клетки живого организма, фотоэмульсию, ионизируют газы, взаимодействуют с атомами (ионами) кристаллической решётки, проявляют корпускулярные свойства. Гамма лучи Невидимы. Ионизируют атомы и молекулы тел. Дают фото- и камптон-эффект. Разрушают живые клетки. Не взаимодействуют с электрическими и магнитными полями. Имеют очень высокую проникающую способность. Чебоксары - 2004 10. Звук. Область звуковых волн v = 20Гц – 20 000Гц Инфразвук Слышимый звук = 17м – 17мм Интенсивность или громкость звука (определяется в деци Беллах в честь изобретателя телефона Александра Грэхема Белла) Ультразвук При длительном и интенсивном воздействии одного и того же раздражителя у человека наступает «запредельное торможение», как охранная, приспособительная реакция организма. Скорость звука зависит от упругих свойств среды и от температуры, например: в воздухе =331м/с (при =00С) и =331,7м/с (при =10С); в воде =1 400м/с; в стали =5000м/с, в вакууме®®® =0м/с Чебоксары - 2004 Звук Интенсивность, мкВт/м2 Уровень звука, дБ Порог слышимости 0,000 001 0 Спокойное дыхание 0,000 01 10 Шум спокойного сада 0,000 1 20 Перелистывание страниц газеты 0,001 30 Обычный шум в доме 0,01 40 Пылесос 0,1 50 Обычный разговор 1,0 60 Радио 10 70 Оживленное уличное движение 100 80 Поезд на эстакаде 1 000,0 90 Шум в вагоне метро 10 000,0 100 Гром 100 000,0 110 Порог ошущений 1 000 000,0 120 11. Применение электромагнитных излучений Низкочастотные волны Плавка и закалка металлов, изготовление постоянных магнитов, в электротехнической промышленности. Радиоволны Радиосвязь, телевидение, радиолокация. УВЧ-терапия, эндорадиозонды. Био - СВЧ СВЧ-терапия. Инфракрасное излучение Тепловое излучение в медицыне. Фотографирование в темноте и тумане. Резка, плавка, сварка тугоплавких металлов лазерами, сушка свежеокрашенных металлических поверхностей. В приборах ночного видения. Терагерцовые волны Можно обнаружить болезни, кариес зубов, процессы старения. В астрономии. Спецслужбам на таможне можно читать закрытые документы, наблюдать за людьми в их собственных домах, разглядеть спрятанное оружие, т.к. всё прозрачно для этих волн, даже твёрдые тела. Применяются в биологии, химии, медицине, экологии. Видимые лучи В медицине светолечение, лазерная терапия.Освещение, голография, фотоэффект, лазеры. Ультрафиолетовые излучение В медицине светолечение УФ-терапия, синтез витамина Д. Закаливание живых организмов, свечение микроорганизмов, лазеры, люминесценция в газоразрядных лампах. Рентгеновские лучи Рентгенотерапия, рентгеноструктурный анализ, рентгенография, лазеры. Гамма лучи Выявление внутренних структур атома. В медицине терапия и диагностика. В геологии каротаж. Лазеры. Военное дело. Дефектоскопия и контроль технологических процессов. Чебоксары - 2004 12. Свойства торсионных полей (торсионное = спинорное = аксионное поле) 1. Образуется вокруг вращающегося объекта и представляет собой совокупность микровихрей пространства. Так как вещество состоит из атомов и молекул, а атомы и молекулы имеют собственный спин - момент вращения, вещество всегда имеет ТП. Вращающееся массивное тело тоже имеет ТП. Существует волновое и статическое ТП. Может возникать за счет особой геометрии пространства. Еще один источник электромагнитные поля. 2. Связь с вакуумом. Составляющая вакуума - фитон - содержит два кольцевых пакета, вращающихся в противоположных направлениях (правый и левый спин). Первоначально они скомпенсированы и суммарный момент вращения равен нулю. Поэтому вакуум никак себя не проявляет. Среда распространения торсионных зарядов - физический вакуум. 3. Свойства магнита. Торсионные заряды одноименного знака (направления вращения) - притягиваются, разноименного - отталкиваются. 4. Свойство памяти. Объект, создает в пространстве (в вакууме) устойчивую спиновую поляризацию, остающуюся в пространстве после удаления самого объекта. 5. Скорость распространения - практически мгновенно из любой точки Вселенной в любую точку Вселенной. 6. Данное поле имеет свойства информационного характера - оно не передает энергию, а передает информацию. Торсионные поля - это основа Информационного Поля Вселенной. 7. Энергия - как вторичное следствие изменения торсионного поля. Изменения в торсионных полях сопровождаются изменением физических характеристик вещества, выделением энергии. 8. Распространение через физические среды. Так как ТП не имеет энергетических потерь, то оно не ослабляется при прохождении физических сред. От него нельзя спрятаться. 9. Человек может непосредственно воспринимать и преобразовывать торсионные поля. Мысль имеет торсионную природу. 10. Для торсионных полей нет ограничения во времени. Торсионные сигналы от объекта могут восприниматься из прошлого, настоящего и будущего объекта. 11. Торсионные поля являются основой мироздания. Чебоксары - 2004 Оранжевый 620 – 585 35 Желтый 585 – 575 10 Желто-зеленый 575 – 550 25 Зеленый 550 – 510 40 Голубой 510 – 480 30 Синий 480 – 450 30 Фиолетовый 450 – 390 60 Длина волны, нм Чебоксары - 2004 1,2 180 1 800 – 620 0,8 Красный 0,6 Ширина участка, нм 0,4 Длина волны, нм 0,2 Цвет 760 740 720 700 680 660 640 620 600 580 560 555 540 520 500 480 460 440 420 400 Белый 0 13.Свет –видимое излучение Дисперсия света Чувствительность глаза, усл. ед. 14. Анкета № 1 (О необходимости создания проекта – презентации) 1. Что вы думаете о свете и звуке: да нет а) Это колебания? 84 9 б) Это электромагнитные явления? 77 16 2. Можно ли ноту «до» и ли «ре» выразить в Герцах? 79 14 3. «Поле» в физике – это колебания? 55 38 4. Вы знаете о «био –СВЧ» ? 2 91 5. Вы хотите узнать? 93 0 6. Вы знаете о торсионном, спинорном, аксионном поле? 3 90 7. Вы хотите узнать? 93 0 8. Вы знаете о террагерцовом излучении? 2 91 9. Вы хотите узнать? 93 0 10. Будете ли вы использовать проект-презентацию, выполненную на лазерном диске, для изучения заданных в этой анкете вопросов? 93 0 а) На домашнем компьютере? 40 53 б) В школьных условиях? 53 40 11. Можно ли использовать ваши анонимные ответы в проекте-презентации? Спасибо. 93 0 Чебоксары - 2004 15. Анкета № 2. (Об использовании готовой презентации) 1. Какова классификация электромагнитных излучений? 2. Их источники? 3. Их свойства? 4. Их применение? 5. Каков диапазон волн «био-СВЧ» и терагерцовых лучей? 6. Их источники? 7. Их свойства? 8. Их применение? 9. Диапазон «видимых» и «слышимых» колебаний и их особенности. Если правильных ответов 10, то «+». Если правильных ответов 5, то «+-». Если правильных ответов менее 5,то «-». Выводы: 1. Имеется scientific information, it is not available to everyone. 2. There was a need to transfer information (according to the results of the analysis of questionnaire No. 1). 3. Project - presentation - a way of transferring information. Cheboksary - 2004 16. Analysis of research work Negative result of knowledge tests (in %% of the number of students) 80 73.68 66.67 70 60 39.29 50 25.93 40 30 18.4211.11 20 0 10 0 2.63 Final check After acquaintance Before acquaintance 0 Cheboksary - 2004 10 A 10 B 1st year 17. Analysis of research work Satisfactory result of knowledge tests (in %% of the number of students) 44.44 45 42.86 40 22.22 35 30 21.43 21 ,05 25 25.93 35.71 28.95 20 15 10 5 10.53 10 A 10 B 1 course of the number of students) 90 80 86.84 74.07 70 60 50 40 30 20 10 0 64.29 29.63 46.43 52.63 Cheboksary - 2004 After familiarization Before familiarization 5.26 1 course 10 B 10 A 39, 29 Final check 11,11 19. Conclusions: Nature gradually reveals its secrets to people to study and use them for the benefit of the whole Earth and for the sake of Life on it. The scale of electromagnetic waves is a reflection of the manifestations of nature and our knowledge about them only today. Cheboksary - 2004 20. Slide of physics teacher Gavrilova Galina Nikolaevna 1. The materials of this project are used by students with different levels of preparedness to study, consolidate, repeat the material; preparation for summarizing, test, control work and exams. 2. The teacher and the student began to cooperate in the course of creating a project - a presentation initiated not by the teacher, but by the student. 3. The project required the student and the teacher to master the skills of working on the Internet, created a real opportunity to communicate with the whole world. 4. The project provided an opportunity for distance learning for children who do not have the opportunity to attend school, but who want to acquire knowledge. 5. The project provides favorable conditions for independent study of the material at the chosen pace with different depths of immersion and the desired number of repetitions. 6. The project qualitatively changes the content methodological developments teachers who can now be offered to colleagues. 7. The project is a presentation made by the student meaningfully, information is structured, calculations are made, graphs are drawn, conclusions are drawn, which significantly improves the quality of the research work. Cheboksary - 2004 21. Literature. 1. Myakishev G.Ya., Bukhovtsev B.B. Physics 11. - M.: Enlightenment, 1991. - P. 157 - 158. 2. Basharin V.F., Gorbushin Sh.A. Thesaurus of a high school physics course: Fund of the educational standard in high school physics (concepts, phenomena, laws, methods of cognition) (“For those who teach - for those who study”). - Izhevsk: Udmurt University Publishing House, 2000. -С . 166 – 169. 3. Enohovich A.S. Handbook of Physics. - 2nd ed., revised. And additional - M .: Education, 1990.-S.215. 4. Nikolaev S. Territory TERA // Young technician. - 2003. - No. 2. - P.12 - 19. 5. Dawswell P. The unknown about the known. - M.: ROSMEN, 2000. - P.79. 6. Craig A., Rosni K. SCIENCE. Encyclopedia. - M.: ROSMEN, 1998. - P.69. 7. Maynard K. Space. Encyclopedia of the young scientist. - M .: ROSMEN,! 999. – P.89. 8. Elliot L., Wilcox W. PHYSICS. – M.: Nauka, 1975. – P.356. 9. Demkin S. Sensational discoveries of Dr. Jiang Kanzheng. Internet. 10. Ways of civilization development. A View from the 21st Century: A Collection scientific articles/ Comp. R.A. Paroshin. - Krasnoyarsk, 2003. - P.64. 11. Uvarov V.V. The wolf is on the table. The nature of torsion fields. // Light. - 1991. - No. 12. – P.21. Cheboksary - 2004


2023
newmagazineroom.ru - Accounting statements. UNVD. Salary and personnel. Currency operations. Payment of taxes. VAT. Insurance premiums