14.04.2024

Топ пять самых дорогих веществ на земле. Горение металлов См


По характеру горения металлы делятся на две группы: летучие и нелетучие. Летучие металлы обладают относительно низкимитемпературами фазового перехода, температура их плавления менее1000 К, температура кипения < 1500 К. К этой группе относятся щелочные металлы (литий, натрий, калий) и ще­лочноземельные (магний, кальций). Температуры фазового перехода нелетучих металлов значительно выше Т плав > 1000 К, а Т кип > 2500 К. Механизм горения металлов во мно­гом определяется состоянием их оксидов. Температура плавления летучих металлов зна­чительно ниже температуры плавления их оксидов. При этом оксиды представ­ляют собой достаточно пористые соединения.

При воздействии ИЗ на поверхность металла проис­ходит его испарение и окисление. При достижении НКПРП происходит их воспламенение. Зона диффузион­ного горения устанавливается у поверхности. Образующиеся пары, свободно диффундируют через пористую оксидную пленку и поступают в зону горения. Кипение металла вызы­вает периодическое разрушения оксидной пленки, что ин­тенсифицирует горние. Продукты горения, окислы металлов диффундируют не только к поверхности металла, способст­вуя образованию корки окисла (оксида), но и в окружающее про­странство, где, конденсируясь, образуются твердые частички в виде белого дыма. Белый плотный дым – признак горения летучих металлов.

У нелетучих металлов при горении на поверхности образуется более плотная окисная пленка, она хорошо сцепляется с поверхностью металла. В результате этого скорость диффузии паров металла через пленку затруднена и поэтому крупные частицы алюминия, бериллия гореть не способны. Как правило, нелетучие металлы горят в виде стружки, порошка аэрозолей. Их горение проходит без об­разования плотного дыма. При горении металлических пылей следует знать особенности, отличающие их от горения органических пылей:

1) при приближении состава горючей смеси (металл-
воздух) к стехиометрической (a = 1) скорость распространения
пламени возрастает;

2) скорость горения металлических пылей одного порядка с горением смесей предельных углеводородов;

3) горение металлов возможно не только в окислительной среде, но и в продуктах горения органических веществ, в этом случае горение протекает за счет экзотермической реакции воспламенения воды до водорода.

2А1 + 3Н 2 О → А1 2 О 3 + 3Н 2 +1389,4 к Дж/моль,

2А1 + 3СО 2 → А1 2 О 3 + 3СО + 1345,3 кДж/моль;

4) аэрогель металлов повышает свои пожароопасные свойства при увлажнении. Склонен к самовозгоранию. И при воспламенении развивает температуру, в десятки раз превышающую горение сухой аэровзвеси. Так, испытания, проведенные ФГУ ВНИИПО МЧС России, показали следующиерезультаты:


· для испытаний были приготовлены две 40-литровые фляги с порошком циркония. Порошок в одном случае был сухой, в другом увлажненный. При воспламенении сухого циркония горение продолжалось 30 мин, Т пл = 1200 0 С, температура воздуха на расстоянии 40 м от фляги составила 300 0 С;

· при воспламенении увлажненного порошка циркония процесс горения не превысил 5 минут, столб пламени имел высоту около 30 м, температура воздуха на расстоянии 40 м от очага горения составила 1300 0 С.

Вопросы для самоконтроля

1. Как классифицируются органические, неорганические ТГМ?

2. Какие соединения относятся к комплексным ТГМ?

3. Как ведут себя при нагревании каучуки, термопласты?

4. Как ведут себя при нагревании древесина, реактопласты?

5. Какие ТГМ горят по гетерогенному механизму?

6. В чем состоит принцип действия огнезащиты ТГМ?

7. Какие способы теплопередачи участвуют в распространении горения по ТГМ?

8. От каких факторов зависит скорость горения ТГМ?

9. В чем сходство в горении жидкостей и ТГМ?

10. Что происходит при воспламенении древесины?

11. Как протекает процесс термического разложения (пиролиза) древесины?

12. При какой температуре происходит прекращение выхода летучих соединений и начало горения углеродистого остатка древесины?

13. Что называется горючей пылью?

14. Что представляют собой аэрогель и аэровзвесь?

15. Какие свойства пылей характеризуют ПВО аэрогеля и аэровзвесей?

16. Каковы основные положения теории горения аэровзвесей?

17. От каких параметров зависят пределы воспламенения аэровзвесей?

18. Как классифицируются металлы по характеру горения?

19. Каковы особенности горения летучих металлов?

20. Каковы особенности горения нелетучих металлов?


Необычное производство удалось развить на площадке бывшего рудника Ломовский, что неподалеку от Кировграда. Здесь бывшие специалисты местного гиганта - медеплавильного комбината организовали выпуск различных изделий из алюминиевых сплавов. Точнее - из композиционных материалов.

Вот уже два десятилетия на Ломовке нет добычи медной руды. Однако это единственный из целого венка бывших сырьевых источников Кировградского медеплавильного комбината, которому повезло продолжить полезное существование. Правда, в совершенно новом качестве. Конечно, кое-как погребенные прежними владельцами шахты и выработки, сочащиеся сернокислотными ручьями, уже никто своим присутствием не беспокоит. А вот часть наземных строений - собственность ООО "Композиционные материалы". Реконструированные, они служат промплощадкой для этой необычной производственной компании.

Сюда, в наши производственные и складские помещения, еще не ступала нога журналиста, - шутит директор предприятия Лев Черный, которого явно забавляет наше изумление: дуешь в глухую металлическую пробирку, а кажется, что это трубка с отверстием на другом конце. Никакого отверстия, конечно, нет, а воздух… выходит через поры в металле.

На этом предприятии с помощью литья производится особый материал - пористый алюминий. Здесь же из него изготавливаются фильтры и глушители, которые применяются в нефтегазодобывающем и химическом оборудовании, автомобильной, авиационной и железнодорожной технике, в продукции общего и специального машиностроения. Ломовские глушители с успехом работают в тормозных системах грузовых автомобилей и автобусов. Уникальную продукцию с "новой" Ломовки знают и приобретают более двухсот отечественных и зарубежных машиностроительных фирм. В числе организаций, эксплуатирующих изделия из пористого алюминия, ОАО "Сибнефть", ОАО "Курганхиммаш", ОАО "Транспневматика", ОАО "РААЗ АМО ЗИЛ", ОАО "Салаватгидромаш", ОАО "Пневматика" и другие российские предприятия, а также компании Белоруссии и Казахстана, прибалтийских республик и Германии, Швейцарии и США…

Алюминий называют "летучим металлом". В этом смысле пористый алюминий - "летучий" вдвойне. Он почти ничего не весит. Берешь в руки заготовку, а она - словно из пенопласта. Но самое главное - на рынке пользуется спросом. Как говорят, уходит влет! Так что и в этом смысле метафора куда как уместна.

Мы участвовали во многих профильных выставках, посещали крупнейшую международную специализированную выставку "Литье и сварка" в Ганновере. Так вот нигде, в том числе и в Ганновере, ничего подобного нашей продукции мы не встречали, - говорит Лев Черный. Фирма "Композиционные материалы" основана при участии специалистов Уральского политехнического института ровно двадцать лет назад, на рубеже перестроечных 80-х и "смутных" 90-х годов прошлого века. Впрочем, никто тогда не знал, каким будет следующее десятилетие и сколь непростым окажется путь к мечте о "своем деле". Захваченный смелой идеей организации бизнеса по производству невиданного материала - недорогого аналога проволочных, металлокерамических и сетчатых материалов - Лев Черный оставил должность начальника металлургического цеха Кировградского комбината. Металлург по образованию, по призванию и по наследству от отца, всю жизнь после войны проработавшего нагревальщиком методических печей на прокатном стане НТМК, Черный принялся за дело, взяв в аренду небольшое помещение на Ломовке.

Сначала это был по сути научно-производственный центр по освоению технологии пористого алюминиевого литья, которую предложил мой бывший однокашник, профессор УГТУ-УПИ, доктор технических наук Евгений Фурман, - рассказывает Лев Емельянович. - Когда перестал функционировать Ломовский рудник, мы смогли приобрести здания, нашли и установили уникальные японские и чешские станки, чтобы - впервые в мировой практике - реализовать нашу технологию в промышленном масштабе. Мы делаем действительно уникальные литейные разработки, активно работаем с мировыми производителями пневматики в вопросах глушения шума.

Небольшой, четыре десятка человек, трудовой коллектив, более четверти которого составляют люди с инженерным образованием, производит по оригинальной технологии фильтрационные материалы и фильтры для различных жидкостей и газов, а также эффективные глушители для любых промышленных пневмосистем. Сегодня на Ломовке производится свыше 320 типоразмеров изделий из этого уникального проницаемого материала.

Следующей ступенью развития компании, не побоявшейся обосноваться "в стороне от цивилизации", стала разработка и запуск в серийное производство электродуговых установок для резки металла. Затем - производство отражательных и тигельных печей оригинальной конструкции. А в дальнейшем… Впрочем, не станем торопить завтрашний день, потому что планировать ныне приходится с осторожностью.

Уходящий год хоть и был для компании юбилейным, но прожит не так уж и легко: кризисные волны докатились и сюда. "Упал" автопром - и это сразу отразилось на количестве заказов. В какой-то период пришлось даже сократить рабочую неделю и около трех месяцев работать по "усеченному" графику. Но в новый год коллектив входит с нормальным жизненным ритмом. Точнее - въезжает. Многозначительный штрих: в первые годы существования предприятия работников доставлял на Ломовку специальный автобус. Позднее нужда в нем отпала: люди стали приезжать на работу на собственных автомобилях, приобретенных на честную зарплату. Именно так: на работу - за город. Туда, где так прозрачен лесной воздух, где течет горная речка со студеной водой, на вкус такой, что не напьешься.

Одна беда, тяжкие раны на земле - неприглядные признаки человеческой безответственности, с которой бывшие владельцы Ломовского рудника отнеслись к своим законным обязанностям по рекультивации почв. В свое время, забросив шахты, причем не только в Ломовке, кировградский медеплавильный гигант напрочь забыл о необходимости приведения, как говорится, планеты в порядок. Странный ландшафт со следами горных выработок и выраженными зонами обрушения порой немало смущает деловых гостей - представителей иногороднего и иностранного бизнеса, заинтересованного в продукции "новой" Ломовки.

Неслучайно, думая о развитии производства и о налаживании достойного маркетинга, руководство компании "Композиционные материалы" пытается "достучаться" до экологов и законников. Хочется этого или нет, но территорию бывшего рудника необходимо приводить в порядок. Потому что негоже так небрежно относиться к родной земле, на которой так много можно сделать, имея руки и умную голову.

Кстати, сейчас инженерные кадры Черного работают над созданием опять же уникальной опытной установки для переработки шламов и сточных шахтных вод, создающих неослабевающую угрозу экологическому благополучию Кировградского района. Найти инвесторов для реализации опробованной сорбционной технологии извлечения меди, цинка и редких металлов из шламовых прудов и отвалов не удалось. Представленный бизнес-план производства в течение года изучался в инвестиционной структуре, созданной правительством области, но был отвергнут. И все- таки Черный от идеи не отказался. Работа над шламоперерабатывающей установкой началась - без заемных денег, за счет энтузиазма. К счастью, с этим капиталом у новых хозяев Ломовки проблем нет.

Зинаида ПАНЬШИНА, Областная газета

Для большинства людей самым ценным веществом на земле является золото. Во многом они будут правы, ценность золота высока и это один из наиболее почитаемых драгоценных металлов, однако его трудно отнести к наиболее дорогим. Что удивительно, даже платина не дотягивает до пятерки редчайших материалов, за которые люди готовы заплатить непомерные деньги.

Так что же можно называть самыми дорогими веществами, которое встречаются на нашей планете? Их список ограничен и в него входят очень редкие экземпляры, что и объясняет их стоимость. Предлагаем ознакомиться с нашим списком топ-5 «самое дорогое вещество в мире ».

5 место — Тааффеит — 2,5 — 20 тысяч долларов за грамм

Химические свойства тааффеита:

  • 1. Его плотность 3,61
  • 2. Твёрдость по шкале Мооса 8.
  • 3. Формула Mg3Al8BeO16.

Представляет редкий драгоценный минерал сиреневого цвета. Этот камень крайне редкий, считается, что он встречается в миллион раз реже, чем бриллиант.

Зачем нужен тааффеит:

вследствие чрезвычайной редкости применяется лишь в качестве драгоценного камня.

Тааффеит открыл граф Ричарда Тааффе, поэтому в честь него и был назван. Тааффе в 1945 году заметил в партии драгоценных камней необычный экземпляр и решил послать его в Лондон для изучения. В лаборатории драгоценных камней выяснили, что минерал отличается от уже открытых. При помощи микрохимического и рентгеноструктурного анализов выяснили, что его состав расположен между составами хризоберилла и шпинели. Из-за того, что в нем присутствуют следы железа, минерал имеет бледный розовато-лиловый цвет.

Стоимость Тааффеита примерно 2,5 — 20 тысяч долларов за один грамм либо 500 — 4 тысячи за карат.

Дорогими могут быть не только вещества, но и предметы из них сделанные. Например, в СССР одной из самых дорогих монет были 10 копеек 1931 года — если Вы найдете такую монетку, то заработаете более 95 тысяч рублей! Остальных участников топа, можете

4 место — Тритий — 30 миллионов долларов за один кг (30 000$ за грамм)

В природе тритий создается атмосферы при соударении частиц космического излучения с ядрами атомов в верхних слоях атмосферы, к примеру, азота.

Химические свойства трития:

  • 1. Тритий в процессе распада превращается в 3He с испусканием антинейтрино (бета-распад) и электрона.
  • 2. Период полураспада трития составляет 12,32 года.
  • 3. Средняя энергия электронов составляет 5,7 кэВ, а доступная энергия распада равняется 18,59 кэВ.

Тритий открыли английские ученые в 1934 году Пауль Хартек, Маркус Олифант и Эрнест Резерфорд.

Зачем нужен тритий:

он применяется для создания самосветящихся знаков «выход» в офисах, школах, кинотеатрах. Используется также как радиоактивная метка в химии и биологии, в термоядерном оружии в виде термоядерного горючего и источника нейтронов, в геологии, чтобы датировать природные воды.

Идут эксперименты по созданию на базе трития генераторов электричества сверхмалой мощности, к примеру, для питания автономных датчиков или питания RFID меток. Срок службы генератора должна составлять примерно около 20 лет.

Промышленный тритий образуется в ядерных реакторах облучением нейтронами лития-6. Чтобы произвести один кг трития необходимо затратить 30 миллионов долларов.

3 место — Бриллианты — 55 тысяч долларов за тысячную долю кг

Бриллиант Куллинан — весит 621 грамм

Бесцветный камень может стоить свыше 11 долларов за карат, а редкие цветные бриллианты могут доходить до 55 тысяч долларов.

Бриллиант – это алмаз, которому при помощи обработки была придана соответствующая специальная форма, она позволяет максимально подчеркнуть его естественный блеск.

Главное в оценке огранки бриллианта является ее качество, то есть насколько грани пропорциональны и геометрически точны. Идеальную огранку кодируют литерой «А», затем располагают по убыванию качества. Наиболее существенный показатель качества бриллиантов – это чистота. Она выражается в отсутствии или наличии дефектов камня либо посторонних включений.

По цвету бриллианты могут быть:

  • 1. традиционными – это бесцветные, а также все оттенки жёлтого;
  • 2. фантазийными – это голубые, розовые, зеленые, синие бриллианты.

Идеальный и без изъянов бриллиант называется бриллиантом чистой воды. Масса бриллиантов меряется в каратах, то есть 1 карат равен 0,0002 кг.

Зачем нужен бриллиант:

чаще всего природные алмазы используются в ювелирной промышленности. К тому же исключительная твёрдость алмаза необходима для применения в промышленности: его применяют для изготовления резцов, сверл, ножей и других подобных изделий.

Кстати, редакция сайта u B iznes.ru подготовила для вас очень интересный топ — , посмотрите, какой алмаз стоит дороже всего.

2 место — Калифорний 252 — 27 миллионов долларов за тысячную долю кг

Калифорний является чрезвычайно летучим металлом.

Химические свойства калифорния:

  • 1. Может существовать только в двух полиморфных модификациях.
  • 2. Ниже 600 °C устойчивостью обладает α-модификация с гексагональной решёткой, а при более 600 °C — β-модификация с гранецентрированной кубической решёткой.
  • 3. Температура кипения равняется 1227 °C.
  • 4. Температура плавления равняется 900 °C.

Зачем нужен калифорний:

изотопы калифорния из-за того, что он крайне дорог в производстве практическим применением никаким не обладают. Его создали лишь однажды, после того как его открыли в 1950 году.

Калифорний Получен искусственно в Калифорнийском университете в Беркли в 1950 году группой Сиборга. Твердые соединения калифорния впервые получены в 1958 году – это 249CfOCl и 249Cf2O3. Всего известно 17 изотопов калифорния.

Калифорний-251 встречается в книге «Символы распада» Чингиза Абдуллаева, где приводится в виде элемента миниатюрной атомной бомбы. Часто можно встретить упоминания о «калифорниевых пулях», которые представляют сверхкомпактные ядерные боезаряды. В большинстве случаев проследить источник подобной информации нет возможности либо заметка оказывается шуткой. Такая заметка вышла в журнале Популярная Механика в 2004 году в виде первоапрельской шутки.

Калифорний считается одним из самых дорогих материалов на нашей планете. Цена изотопа 252Cf достигает 500 миллионов долларов США за кг.

1 место — Антивещество — 62,5 триллиона долларов за грамм

Зачем нужен это материал:

в будущем антиматерию теоретически можно применить в качестве топлива, которое позволит доставлять космические корабли к другим планетам.

Если удастся создать технологии, способные производить и удерживать антиматерию, то это будет прорыв. Можно будет создать компактную бомбу, которая уничтожит целую планету либо реактор, способный обеспечить энергетические потребности всех континентов.

Однако для его производства необходимо использовать невероятно дорогие технологии. К примеру, чтобы создать всего лишь тысячную долю кг, всему миру нужно было бы работать целый год. Весь ВВП в мире равняется 65 трлн. долларов. Согласитесь, очень дорогой материал.

Видео — дорогие вещества мира:

Кандидат технических наук А. ЖИРНОВ, заместитель генерального директора ВИАМа.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Восьмимоторный гигант АНТ-20 ("Максим Горький") был построен, как и многие металлические самолеты начала 30-х годов, из гофрированного алюминия.

При использовании традиционного сплава Д-16 пассажирский самолет Ту-154 получался слишком тяжелым.

Сварной корпус самолета МиГ-29 изготовлен из алюминиево-литиевого сплава 1420.

Массивные и очень ответственные детали шасси современных транспортных и пассажирских самолетов ОКБ им. С. В. Ильюшина изготовлены из титанового сплава ВТ-22. На снимке: Ил-76.

Сталь и алюминий, титан и пластмассы, клеи и дерево, стекло и резина - ни один самолет не полетит без этих материалов. Все они разработаны или испытаны в ВИАМе

В каждой лопатке турбины реактивного двигателя воплощены самые совершенные металлургические технологии. Стоимость одной монокристаллической лопатки соизмерима с ценой дорогого легкового автомобиля

Испытательный центр - "малая академия наук" ВИАМа. Грозит ли усталость металла разрушением самолета? Как найти скрытые дефекты в металле? Какими свойствами обладает новый материал? Во всем этом разбираются сотрудники Испытательного центра

Армрестлинг как способ разрешения ученого спора, или Как Н. С. Хрущев летал в Америку

- "Состаренный" материал не значит "старый"

Как кроили "шубу" для "Бурана"

От воздействия высоких температур турбинные лопатки защищает плазма

Чем совершеннее летательный аппарат, тем больше в нем неметаллических материалов. Уже спроектированы самолеты, на две трети состоящие из композитных материалов и пластмасс

Утром лаборант, вечером студент. И все это - не выходя из родной лаборатории. Если государство не готовит специалистов, их приходится учить на месте

Коррозия - враг любого металла. Ржавеет даже нержавеющая сталь. Как лечить язвы на теле "Рабочего и колхозницы"?

Склеить можно все что угодно. Нужен только подходящий клей. В небе летают склеенные самолеты, и это не детские модели, а большие транспортные воздушные суда.

Первые шаги нашей авиации связаны с закупкой иностранных самолетов. Были они по большей части деревянными, фюзеляж и крылья обтягивались тканью. Конечно же такие "матерчатые" самолеты не могли выдерживать значительных скоростных и температурных нагрузок, нужны были иные материалы, прежде всего - металл.

Идея строить самолеты из алюминия возникла в Германии. Там же появились первые сплавы, разработанные специально для самолетов. Их назвали дуралюминами. Подобный сплав был создан и у нас в стране в середине 20-х годов. Он получил марку Д-1 - это сплав алюминия с медью и небольшим количеством магния.

В 1932 году академик А. А. Бочвар разработал теорию рекристаллизации алюминиевых сплавов, которая легла в основу создания легких сплавов. В стране к тому моменту существовала производственная база: первый алюминиевый завод "Кольчугалюминий" (расположенный в селе Кольчугино Владимирской области) выпускал гладкие и гофрированные листы технического алюминия - это алюминий с небольшими добавками марганца и магния. Такой алюминий обладал достаточной прочностью, был пластичен и потому использовался для обшивки фюзеляжей летательных аппаратов.

Однако материал для новых скоростных самолетов должен был иметь совершенно иные качества. И через некоторое время в лаборатории алюминиевых сплавов ВИАМа (созданной одновременно с открытием института в 1932 году) разработали сплав Д-16, который применялся в самолетостроении почти до середины 80-х годов. Это сплав на основе алюминия с содержанием 4-4,5% меди, около 1,5% магния и 0,6% марганца. Из него можно было делать практически любые детали самолета: обшивку, силовой набор, крыло.

Но скорости и высота полетов росли. Требовались высокопрочные сплавы. В середине 50-х годов возглавивший лабораторию алюминиевых сплавов академик И. Н. Фридляндер совместно со своими коллегами В. А. Ливановым и Е. И. Кутайцевой разрабатывает теорию легирования высокопрочных сплавов. Введение в систему алюминий - медь цинка и магния позволило резко увеличить прочность материала. Так возник сплав В-95, обладающий прочностью 550-580 Мпа (~ 5500- 5800 кгс/см 2) и в то же время имеющий хорошую пластичность. У него был один изъян: недостаточная коррозионная стойкость, что, однако, устранялось путем двухступенчатого искусственного старения.

Новый сплав получил признание авиастроителей не сразу. В это время А. Н. Туполев создавал новый пассажирский лайнер Ту-154. Проект никак не укладывался в заданные весовые характеристи ки, и тогда генеральный конструктор сам позвонил Фридляндеру, обратившись за помощью, на что тот конечно же предложил использовать новый сплав. Проект новой машины переработали. Сплав В-95 нашел свое место для верхней поверхности крыла, из него изготовили прессованные панели и стрингеры, значительно снизив вес самолета. Такие же исследования параллельно шли в США. Там возникли сплавы серии 7000, в частности сплав 7075 - полный аналог нашего сплава.

Нагрузки, которые испытывает крыло самолета, неравноценны. Если верх крыла работает в основном на сжатие, то нижняя часть - на растяжение. Поэтому ее по-прежнему делали из дуралюмина Д-16, имеющего более высокие пластичность и порог усталости. Но и этот сплав претерпел серьезную модификацию за счет повышения чистоты по примесям при литье слитков. Технологические усовершенствования были столь значительны, что появился фактически новый материал - сплав 1163, который и в настоящее время успешно используется в нижних обшивках крыла и всего фюзеляжа.

Увеличение эксплуатационного ресурса самолетов всегда оставалось и остается задачей номер один. Добиться еще большей надежности и долговечности материалов можно, изменив структуру металла - "измельчив зерно". Для этого в сплавы начали вводить небольшие количества (до 0,1%) циркония. Величина зерна металла действительно резко уменьшилась, ресурс возрос. Одновременно создавались специальные ковочные сплавы, предназначенные для самых ответственных, силовых конструкций лайнеров. Так был разработан сплав 1933, превосходящий по своим параметрам зарубежные аналоги. Из него изготовляют детали силового набора и шпангоуты. Специалисты европейской авиастроительной фирмы "Эрбас" провели испытания нового материала и приняли решение использовать его в своих самолетах серий А-318 и А-319.

К сожалению, процесс весьма выгодного сотрудничества приостановлен. Причина в том, что акции двух основных российских производителей алюминиевой продукции - Самарского и Белокалитвенского металлургических комбинатов - выкуплены американской фирмой "ALKO". Значительная часть оборудования на предприятиях демонтирована, технологическая цепочка нарушена, квалифицированные кадры разошлись, и производство фактически прекратилось. Сейчас эти предприятия выпускают в основном фольгу, которая идет на изготовление пищевых банок и упаковок…

И хотя в настоящее время при посредстве российского правительства между компанией "АЛКОА-РУС" (она теперь называется так), ВИАМом и авиационными конструкторскими бюро достигнуты договоренности о возобновлении выпуска так необходимых нашей авиационной промышленности материалов, процесс восстановления идет крайне медленно и болезненно.

ВИАМ стал родоначальником серии сплавов пониженной плотности. Это совершенно новый класс материалов, содержащих литий. Первый такой сплав создал академик И. Н. Фридляндер со своими учениками еще в 60-х годах - на четверть века раньше, чем где-либо в мире. Его практическое использование, правда, поначалу было ограничено: такой активный элемент, как литий, требует особых условий выплавки. Первый промышленный алюминиево-литиевый сплав (его марка 1420) был создан на основе системы алюминий - магний с добавлением 2% лития. Его использовали в КБ А. С. Яковлева при строительстве самолетов вертикального взлета для палубной авиации - именно для таких конструкций экономия веса имеет особое значение. Як-38 эксплуатируется до сих пор, и никаких нареканий к сплаву нет. Более того. Оказалось, что детали из этого сплава обладают повышенной коррозионной стойкостью, хотя алюминиево-магниевые сплавы и сами по себе мало подвержены коррозии.

Сплав 1420 можно сваривать. Это его свойство использовали при создании самолета МиГ-29М. Выигрыш в весе при строительстве первых опытных образцов самолета за счет пониженной плотности сплава и исключения большого количества болтовых и клепочных соединений достигал 24%!

В настоящее время модификацией этого сплава - сплавом 1424 - весьма заинтересовались специалисты "Эрбаса". На заводе в городе Кобленце (ФРГ) из сплава откатали широкие листы длиной 8 м, из которых изготовили полноразмерные элементы конструкции фюзеляжа. Ребра жесткости из того же материала приварили лазерной сваркой, а элементы соединили между собой сваркой трением, после чего отправили на ресурсные испытания во Францию. Несмотря на то что некоторым деталям намеренно нанесли повреждения (для оценки работоспособности в экстремальной ситуации), после 70 тысяч циклов нагрузки конструкция полностью сохранила эксплуатационные свойства.

Еще один сплав с литием, созданный в ВИАМе, - 1441. Его главная особенность в том, что из него можно делать листы рулонной прокатки толщиной 0,3 мм с сохранением высоких прочностных качеств. Конструкторское бюро имени Бериева использовало сплав для изготовления обшивки своего гидросамолета Бе-103. Эту небольшую - всего на четыре человека - машину, толщина обшивки которой 0,5-0,7 мм, выпускает завод в Комсомольске-на-Амуре. Ее вес на 10% меньше, чем аналогичных моделей из традиционных материалов. Партию таких самолетов уже купили американцы.

Тонкий, но прочный прокат необходим для создания недавно появившегося нового класса материалов - слоистых алюмостеклопластиков, которые в России называются "сиал", а за границей - "глэр". Материал представляет собой многослойную конструкцию: чередование слоев алюминия и стеклопластика. У него немало преимуществ перед монолитными. Во-первых, стеклопластик можно армировать искусственными волокнами, на треть увеличивая прочность. Но главный выигрыш в том, что, если в конструкции появляется трещина, она растет на порядок медленней, чем в монолитных материалах. Именно этим сиалы, или глэры, в первую очередь заинтересовали авиастроителей. Из такого материала впервые изготовлена верхняя часть обшивки фюзеляжа аэробуса А-380 в наиболее ответственных местах - перед крылом и после крыла. Ресурсные испытания показали, что трещина в таком материале при рабочих нагрузках практически не растет. Поэтому глэры можно использовать как преграды-стопперы для предотвращения роста трещин в виде вставок в верхние обшивки фюзеляжа, где требуются особо высокая надежность и долгий ресурс службы.

Титан, как и алюминий, тоже имеет право называться небесным или крылатым. Лаборатория титановых сплавов была создана в институте в 1951 году. Ее основатель профессор С. Г. Глазунов изобрел установку для литья титана и, собственно, создал первый титановый сплав. Вторая подобная установка была с помощью ВИАМа построена во Всесоюзном институте легких сплавов (ВИЛС), а потом мы вместе внедряли разработанные технологические процессы на металлургическом комбинате в Верхней Салде, который сейчас является основным производителем титановой продукции в стране. В советское время комбинат выпускал более 100 тыс. тонн такой продукции. После распада СССР производство сократилось в несколько раз. Новому директору завода В. В. Тютюхину пришлось приложить огромные усилия, чтобы исправить положение. После резкого спада производства завод начал подниматься. Сейчас выпуск титановой продукции составляет 25 тыс. тонн в год. Большая ее часть (около 80%) поставляется за границу по заказам ведущих самолетостроительных концернов. В связи с оживлением авиастроительной промышленности в России возникла насущная необходимость создания альтернативного производства. Гиганту, каким является комбинат, невыгодно выпускать небольшие партии продукции. Заказы же российских авиапроизводителей пока невелики - 3-5 тонн, а цикл изготовления очень длительный и доходит до года. Такое производство может быть создано на базе ВИАМа, ВИЛСа и Ступинского металлургического комбината, где, собственно, и перерабатываются слитки, получаемые из Верхней Салды.

В ВИАМе создано более полусотни титановых сплавов различного назначения, из которых сегодня серийно используется около тридцати. Сейчас доля титановых сплавов в самолете в зависимости от его типа и назначения колеблется от 4 до 10-12%. Высокопрочные сплавы из титана, например ВТ-22, более четверти века используются для изготовления сварных шасси Ил-76 и Ил-86. Это сложные, массивные детали на Западе начинают делать из титана только сейчас. В ракетной технике доля титана намного выше - до 30%.

Созданные в ВИАМе высокотехнологичные сплавы ВТ-32 и ВТ-35 в отожженном состоянии очень пластичны. Из них можно формовать сложные детали, которые после искусственного старения приобретают чрезвычайно высокую прочность. Когда в начале 1970-х годов в КБ Туполева создавался стратегический бомбардировщик Ту-160, на московском заводе "Опыт" был построен специальный цех для изготовления титановых деталей центроплана. Эти самолеты летают до сих пор, правда, в России их осталось только одна эскадрилья.

С егодня перед ВИАМом стоит задача создания титановых сплавов, надежно работающих при температурах 700-750 о С. К сожалению, все металловедческие возможности, использовавшиеся при создании традиционных сплавов, уже реализованы. Требуются новые подходы. В этом направлении в лаборатории идут исследования по созданию так называемых интерметаллидных соединений на базе титан - алюминий.

Алюминиево-бериллиевые сплавы (их называют АБМ) исследуются и создаются на нашем предприятии уже 27 лет. Первый самолет с использованием такого сплава построил конструктор П. В. Цыбин.

Сплавы АБМ выгодно отличаются от других алюминиевых сплавов более высокой усталостной прочностью и уникальной акустической выносливостью. Сейчас они нашли применение в сварных конструкциях космических аппаратов, в том числе в серии хорошо известных межпланетных станций "ВЕНЕРА".

Интересен и сам бериллий, у которого модуль упругости на 30-40% выше, чем у высокопрочных сталей, а коэффициенты термического расширения близки, что позволило применять его в гироскопах.

В ВИАМе разработана технология изготовления тонкой вакуумно-плотной фольги и дисков и пластин из нее. Разработана технология пайки такой фольги с другими конструкционными материалами, и налажено серийное производство узлов рентгеновских аппаратов как для российских предприятий, так и для зарубежных фирм.

Еще один наш филиал организован в Поволжье в начале 1980-х годов, во время создания самого большого авиационного завода в Ульяновске, который выпускал гиганты авиации - "Русланы" и "Мрии". Для технологического сопровождения этих самолетов и была создана специальная лаборатория.

Одна из ее задач - внедрение в авиастроение композиционных материалов. Это - ближайшее будущее самолетостроения. Например, "Боинг-787", который готовится к выпуску через два года, на 55-60% будет состоять из композиционных материалов. Весь планер: фюзеляж, крыло, оперение - строится из композиционных материалов - углепластиков. Доля алюминия сократится до 15%. Углепластики - чрезвычайно заманчивый материал для самолетостроителей. Они обладают высокой удельной прочностью, малым весом, довольно приличными ресурсными характеристиками. Угроза разрушения из-за образования трещин снижается на порядки. Хотя, конечно, в отношении этих материалов остается ряд вопросов, которые до сих пор не решены. Было установлено, например, что в месте контакта углепластика с алюминием из-за возникновения гальванической пары развивается коррозия. Поэтому в таких местах алюминий пришлось менять на титан.

Когда создавался Ульяновский филиал, доля композитных материалов в конструкции отечественных летательных аппаратов была не очень велика. Тем не менее мы потихоньку начали обучать работе технологов, рабочих… Потом настали трудные времена, весь завод находился на грани закрытия, но филиал выжил. Постепенно производство восстанавливалось, и, хотя до сих пор оно наполовину законсервировано, есть несколько заказов на Ту-204, есть заказы из Германии на изготовление "Русланов". А значит, есть поле деятельности для нашей лаборатории.

Второе направление работы Ульяновского филиала - специальные, эрозионно- и коррозиестойкие покрытия.

При разложении металлоорганических жидкостей в вакууме на поверхностях образуются покрытия из хрома и карбидов хрома. Регулируя процесс, можно получать покрытия, содержащие любые соотношения этих компонентов - от чистого хрома до чистых карбидов. Твердость хромированного покрытия - 900-1000 Мпа, карбидного - вдвое выше - около 2000 Мпа. Но, чем выше твердость, тем больше хрупкость. Между этими крайностями и находят искомое в каждом отдельном случае.

Другой путь достижения нужных результатов обеспечивают нанотехнологии. В гальванические хромосодержащие ванны вводят наночастицы карбидов и оксидов металлов размером от 50 до 200 нм. Изюминка процесса в том, что сами эти частицы в состав покрытия не входят. Они лишь усиливают активность осаждаемого компонента, создают дополнительные центры кристаллизации, благодаря чему покрытие получается более плотным, более коррозиестойким, обладает лучшими противоэрозионными свойствами.

И в заключение еще об одном уникальном качестве института: в СССР существовала неплохая система, надежно гарантирующая качество конечного продукта предприятия. В ВИАМе эта система сохранилась и поныне. Если конструкторское бюро или частная компания закупают какой-то продукт, перед использованием они предпочитают передать его в ВИАМ на испытание. Нам по-прежнему доверяют.

См. в номере на ту же тему


© 2024
newmagazineroom.ru - Бухгалтерская отчетность. УНВД. Зарплата и кадры. Валютные операции. Уплата налогов. НДС. Страховые взносы