03.05.2024

Угроза приближается со скоростью гиперзвука. Гиперзвуковая война пугает неопределенностью Китайские гиперзвуковые аппараты


Мне задают вопросы про испытания новой ракеты "Авангард" с "гиперзвуковыми" (называется скорость полета в атмосфере 20-27 Махов, т.е. скоростей звука) боевыми блоками.

Скажу честно - для серьезного комментария инфы не хватает, а та, что есть - крайне противоречива. Но кое-что сказать можно.

Начну с определения понятия "гиперзвуковой". В авиации гиперзвуковой скоростью считается скорость уже 5-6 (разумеется, и более) скоростей звука для данной высоты. Почему для данной? Потому что скорость звука в воздуха зависит от его давления, а давление падает с высотой. Соответственно, на разных высотах скорость звука разная (кому интересно - погуглите стандарт МСА - международной стандартной атмосферы).

В общем случае гиперзвуковой скоростью обладает любой аппарат, летящий в атмосфере со скоростью более М>5...6
Например, спускаемый аппарат космического корабля "Союз" при возврате из космоса входит в атмосферу с первой космической скоростью (примерно М=23...24), а любая ракета-носитель, стартуя с земной поверхности и разгоняясь до первой космической скорости, тоже с какого-то момента летит на гиперзвуковой скорости (пока не выйдет за пределы атмосферы). Но - внимание! Назвать из гиперзвуковыми летательными аппаратами нельзя! И именно здесь начинается мухлеж, который мы слышим из официальных источников при бахвальстве нашим новым оружием: сначала "Кинжалом", теперь "Авангардом". Потому что не любой аппарат, летящий на гиперзвуковой скорости, является "гиперзвуковым летательным аппаратом". Например, боеголовки баллистических ракет, летающие с середины прошлого века и входящие в атмосферу на гиперзвуке, не являются гиперзвуковыми летательными аппаратами (ГЛА).

В авиации есть четкое определение ГЛА - это летательный аппарат, какое-то время осуществляющий УСТАНОВИВШИЙСЯ гиперзвуковой полет в атмосфере. Установившийся - это когда сила тяги двигателя компенсирует сопротивления воздуха (обеспечивается постоянство гиперзвуковой скорости), а сила тяжести компенсируется аэродинамической подъемной силой (постоянство высоты полета). При этом маневрирование (изменение направления полета) может обеспечиваться отклонением аэродинамических поверхностей (рулей) или изменением вектора тяги двигателя.

Двигатель может быть ракетным (жидкостным или твердотопливным) или воздушно-реактивным (например гиперзвуковым прямоточным воздушно-реактивным).

Ракетный двигатель работает очень непродолжительное время, измеряемое секундами (десятками). Поэтому аппарат с ракетным двигателем сначала набирает скорость, а потом, после выработки топлива и выключения двигателя, летит по инерции, тормозясь сопротивлением встречного потока воздуха. Именно поэтому ракета, часть времени летя со сверхзвуковой скоростью, НЕ ЯВЛЯЕТСЯ гиперзвуковым летательным аппаратом. Соответственно, "Кинжал" является аэробаллистической ракетой "Искандер" воздушного базирования, но не гиперзвуковым летательным аппаратом. Как те же "Сатана" или "Искандер".

Установившийся гиперзвуковой полет может обеспечить только гиперзвуковой воздушно-реактивный двигатель (ГПВРД), выгодно отличающийся от ракетного тем, что если для него топливо (горючее и окислитель) запасаются на борту летательного аппарата и сжигаются за десятки секунд, то у гиперзвукового аппарата с ГПВРД на борту только горючее, а окислитель (кислород) берется из окружающей атмосферы. Именно это обеспечивает на порядки более высокую эффективность (экономичность) ГПВРД, и время его работы десятки минут и более.

Суммируя сказанное: гиперзвуковой летательный аппарат - это аппарат с гиперзвуковой КРЕЙСЕРСКОЙ скоростью, выполняющий УСТАНОВИВШИЙСЯ полет на гиперзвуковой скорости, как правило - за счет гиперзвукового воздушно-реактивного двигателя. И из имеющейся информации, ни "Авангард", ни его планирующие боевые блоки не являются гиперзвуковыми летательными аппаратами, а всего лишь - маневрирующими боеголовками с увеличенным атмосферным участком полета. И судя по всему - летящими по инерции. Напомню, что первые пуски прообразов таких боевых блоков были осуществлены в СССР еще в 1960-х годах (например, "ракетопланы" МП-1 Владимира Челомея).

Что же касается собственно создания по-настоящему гиперзвуковых летательных аппаратов с ГПВРД, то это сложнейшая инженерно-техническая задача, решение которой в "Авангарде" и рядом не стоит. И насколько это вообще "по зубам" современной России - баааальшой вопрос... Это и у американцев пока не получается, а мы от них в этом плане сильно в заднице, хотя в СССР были хорошие наработки в рамках темы "Холод".

Почему "Холод"? Да потому что топливом для гиперзвуковых летательных аппаратом может быть только жидкий водород или сжиженный газ, теплоемкость которых помогает охлаждать аппарат и гиперзвуковой двигатель в полете.
Еще два момента, требующие пояснений, судя по комментам на пуск "Авангарда".

Первый - температура лобовой ("наветренной") части боевого блока в 2000 град. С при температуре во фронте ударной волны в 20000 градусов - вполне реально. Достаточно вспомнить, что "углерод-углеродные" носки на "Буране" выдерживали температуру до 1750 градусов, а с тех пор появились новые материалы (кому интересно - смотрите здесь http://www.buran.ru/htm/tersaf4.htm , ниже к посту дана картинка для плиточной теплозащиты "Бурана").

Второй - скорость полета М=27. Многие обратили внимание, что эта скорость выше первой космической, т.е. и наш "Буран", и американские шаттлы, и различные спускаемые аппараты, как и все боеголовки баллистических ракет, входят в атмосферу с более низкой скоростью. Например, для "Бурана" расчет посадочной траектории начинался с высоты 152500 метров ("официальная граница" космоса 100 км) - в этот момент он имел скорость 7578 метров секунду, что равнялось 22,82 Маха. Корабль падал, т.е. ускорялся, поэтому максимальное число Маха=27,92 достигалось на высоте 93-90 км. Это все еще космос, атмосферы почти нет. Например, скоростной напор (динамическое давление встречного потока) на этой высоте на указанной скорости 7,5 км/с составляет всего... 10 кг на квадратный (!) метр. В таких условиях говорить о "гиперзвуковом" полете на высоте 90 км может только полный идиот. Ну, или гуманитарий. Ну а по температуре уже все заметно - с начальных 27 градусов Цельсия на орбите к высоте 90 км температура успевает подняться до 1200 градусов.

Однако если говорить о максимальном нагреве (здесь важен кумулятивный эффект, да и скоростной напор нарастает быстрее темпа снижения скорости), то максимум 1656 градусов С достигается к высоте 77800 метров (скорость 7582 м/с, или М=26.69), и держится до высоты 69400 метров (скорость 6277 м/с, или М=21.05). Как видите, названные скорости М=27 вполне реальны, но установившийся полет на таком режиме при современных технологиях немыслим. Все, что мы сегодня слышим - это выхватывание дилетантами цифр из контекста.

Ну а что касается "подарка на Новый год" - сначала пенсию верни, балабол...

PS: что еще могу добавить. В середине "нулевых" годов появилась крайне интересная и сверхсекретная тема (напрягшимся компетентным товарищам могу дать ссылку на единственную открытую публикацию в журнале "Авиационная техника и технологии" НПО "Молния) - так называемые "трансатмосферные летательные аппараты". В двух словах - УСТАНОВИВШИЙСЯ полет в атмосфере на КРЕЙСЕРСКИХ скоростях ВЫШЕ первой космической скорости. Но здесь, судя по всему, абсолютно не тот случай...

PPS: и последнее (если быть точным) - в качестве определения для "гиперзвукового летательного аппарата" я использовал определение термина "гиперзвуковой самолет"


Повышение рабочих температур теплозащитных материалов

6-го февраля в 1950-м во время очередного испытания советский реактивный истребитель МиГ-17 в горизонтальном полете превысил скорость звука, разогнавшись почти до 1070-и км/ч. Это превратило его в первый сверхзвуковой самолет серийного производства. Разработчики Микоян и Гуревич явно гордились своим детищем.

Для боевых полетов МиГ-17 считался околозвучным, так как его крейсерская скорость не превышала 861 км/ч. Но это не помешало истребителю стать одним из самых распространенных в мире. В разное время он состоял на вооружении Германии, Китая, Кореи, Польши, Пакистана и десятков других стран. Этот монстр принял участие даже в боевых действиях во Вьетнамской войне.

МиГ-17 - далеко не единственный представитель жанра сверхзвуковых самолетов. Мы расскажем еще о десятке воздушных лайнеров, которые тоже опередили звуковую волну и стали известными во всем мире.

Bell X-1

ВВС США специально оснастили Bell X-1 ракетным двигателем, так как хотели с его помощью изучить проблемы сверхзвукового полёта. 14-го октября в 1947 аппарат разогнался до 1541 км/ч (число Маха 1.26), преодолел заданный барьер и превратился в звезду поднебесья. Сегодня модель-рекордсменка покоится в Смитсоновском музее в Штатах.

Источник: NASA

North American X-15

North American X-15 тоже оснащен ракетными двигателями. Но, в отличие от своего американского коллеги Bell X-1, этот самолет достиг скорости 6167 км/ч (число Маха 5,58), превратившись в первого и на 40 лет единственного в истории человечества (с 1959-го) пилотируемым гиперзвуковым летательным аппаратом, совершавшим суборбитальные пилотируемые космические полёты. С его помощью изучали даже реакцию атмосферы на вход в нее крылатых тел. Всего произведено три единицы ракетопланов типа Х-15.


Источник: NASA

Lockheed SR-71 Blackbird

Грех не применять сверхзвуковые самолеты в военных целях. Поэтому ВВС США спроектировали Lockheed SR-71 Blackbird - стратегический разведчик с максимальной скоростью 3700 км/ч (число Маха 3,5). Главные достоинства - быстрый разгон и высокая маневренность, позволившая ему уклоняться от ракет. Также SR-71 был первым самолётом, который оснастили технологиями снижения радиолокационной заметности.

Построено всего 32 единицы, 12 из которых разбились. В 1998-м снят с вооружения.


Источник: af.mil

МиГ-25

Не можем не вспомнить отечественный МиГ-25 - сверхзвуковой высотный истребитель-перехватчик 3-го поколения с максимальной скоростью 3000 км/ч (число Маха 2,83). Самолет был настолько крутым, что на него позарились даже японцы. Поэтому 6-го сентября в 1976-м советскому летчику Виктору Беленко пришлось угнать МиГ-25. После этого в течение многих лет во многих частях Союза самолеты начали заправлять не до конца. Цель - чтобы они не долетали до ближайшего иностранного аэропорта.


Источник: Алексей Бельтюков

МиГ-31

Советские ученые не прекращали трудиться на воздушное благо отечества. Поэтому в 1968-м началась проектировка МиГ-31. А 16-го сентября в 1975-м он впервые побывал в небе. Этот двухместный сверхзвуковой всепогодный истребитель-перехватчик дальнего радиуса действия разогнался до скорости 2500 км/ч (число Маха 2,35) и стал первым советским боевым самолётом четвёртого поколения.

МиГ-31 предназначен для перехвата и уничтожения воздушных целей на предельно малых, малых, средних и больших высотах, днём и ночью, в простых и сложных метеоусловиях, при активных и пассивных радиолокационных помехах, а также ложных тепловых целях. Четыре МиГ-31 могут контролировать воздушное пространство протяжённостью до 900 километров. Это не самолет, а гордость Союза, которая до сих пор состоит на вооружении России и Казахстана.


Источник: Виталий Кузьмин

Lockheed/Boeing F-22 Raptor

Самый дорогой сверхзвуковой самолет построили американцы. Они смоделировали многоцелевой истребитель пятого поколения, который стал самым дорогим среди коллег по цеху. Lockheed/Boeing F-22 Raptor на сегодняшний день является единственным состоящим на вооружении истребителем пятого поколения и первым серийным истребителем со сверхзвуковой крейсерской скоростью 1890 км/ч (1,78 Маха). Максимальная скорость 2570 км/ч (2,42 Маха). Его в воздухе до сих пор никто так и не превзошел.


Источник: af.mil

Су-100/Т-4

Су-100/Т-4 («сотка») разрабатывался в качестве истребителя авианосцев. Но инженерам ОКБ Сухого удалось не просто достигнуть поставленной цели, а смоделировать крутой ударно-разведывательный бомбардировщик-ракетоносец, который потом хотели применить даже в качестве пассажирского самолета и разгонщика для авиационно-космической системы Спираль. Максимальная скорость Т-4 - 3200 км/ч (3 Маха).


Как то мы с вами обсуждали довольно скептическое мнение , однако работы эти никто не останавливает и все движутся вперед.

По данным источника в оборонно-промышленном комплексе, новейшая российская гиперзвуковая противокорабельная ракета «Циркон» достигла на испытаниях восьми скоростей звука.

По словам источника, «в ходе испытаний ракеты было подтверждено, что ее скорость на марше достигает 8 Махов», передает ТАСС. Кроме того, как отметил источник, ракеты «Циркон» могут запускаться из универсальных пусковых установок 3С14, которые также используются для ракет «Калибр» и «Оникс».

Дальность стрельбы «Цирконом», согласно открытым данным, составляет около 400 километров. В феврале осведомленный источник сообщал, что гиперзвуковая ракета «Циркон», предназначенная для подводных лодок типа «Ясень» и «Хаски», впервые может быть запущена с морского носителя весной этого года. В апреле 2016 года источник в российском оборонно-промышленном комплексе отмечал, что «Циркон» должен быть запущен в серийное производство в 2018 году.

Американская X-51AWaverider при последнем тестовом полете показала скорость 4,8 МАХ.

А теперь немного подробнее про "Циркон".


Число «Маха» или «М» определяет отношение локальной скорости потока к скорости звука - 331 м/с. Превысить скорость звука в шесть-восемь раз - одна из глобальных задач развития современного авиа и ракетостроения. С появлением гиперзвуковых летательных аппаратов конструкторы связывают прорыв в новое, 6-е поколение авиационной техники. С военной точки зрения гиперзвуковые летательные аппараты крайне эффективное ударное средство. Гиперзвуковой полет неразличим для современных средств радиолокации. Не существует и даже не предвидится создание средств перехвата подобных ракет.

Глобальное разоружение

В СССР это поняли еще в 60-х годах прошлого века, когда проектировали расположенную под Москвой систему НПРО с ракетами А-135. Система перехвата входящих в атмосферу на скорости 5-10 км в секунду ядерных боеголовок решена на комплексе весьма своеобразно. Если электроника все равно их не видит, то и ракету надо нацеливать не «в копеечку», а «в белый свет», видимо, решили конструкторы и установили на противоракете ядерную боевую часть. То есть, зная о ядерном нападении, советская противоракета выстреливалась в район предполагаемого нахождения вражеских ядерных блоков с тем, чтобы уничтожить их с помощью встречного ядерного взрыва в атмосфере. Система эта, напомним, до сих пор стоит на вооружении. И считается единственной эффективной системой НПРО в мире.

«Чтобы обнаружить атакующие цели, навести на них противоракеты и сделать встречный залп, есть несколько десятков минут, - рассказал телеканалу «Звезда» Владимир Дворкин, до 2001 года возглавлявший 4-й ЦНИИ Минобороны (институт, занимавшийся проблемами развития и применения ядерного оружия). - Американская морская ракета «Трайдент» летит до нас 15-20 минут, сухопутный «Минитмен-3» - 25-35 минут».

Это снижает вероятность «разоружения противника», говорит эксперт, у нас всегда остается время на то, чтобы подготовиться, встретить эти ракеты и хотя бы большую часть из них уничтожить. Следовательно, сохраняется возможность ответного ядерного удара по территории США. Поэтому в Америке сегодня разрабатывается новая концепция ядерной войны. В рамках программы «молниеносного глобального удара» Вашингтон планирует получить оружие, способное пролететь расстояние от США до России за вдвое, а то и втрое меньшее время, для того чтобы у противника просто не осталось ни малейших шансов отреагировать. Достичь этого предполагается за счет создания гиперзвуковых летательных аппаратов.

В отличие от баллистических ракет, гиперзвуковые будут стартовать с бомбардировщиков, а также наземных пусковых Mk-41. Это должно сделать невозможным обнаружение пуска существующими космическими и наземными средствами предупреждения о ракетном нападении. А значит, создаст иллюзию возможности безнаказанно начать и выиграть ядерную войну. Эта теория очень популярна в экспертном сообществе США.

В итоге только в США различными ведомствами разрабатывается сразу несколько перспективных проектов: X-43A (НАСА), X-51A (ВВС), AHW (Сухопутные войска), ArcLight (DARPA, ВМС), Falcon HTV-2 (DARPA, ВВС). Их появление, по мнению специалистов, позволит создать гиперзвуковые авиационные крылатые ракеты большой дальности, морскую крылатую ракету в противокорабельном и ударном против наземных целей вариантах к 2018-2020 годам, разведывательный самолет - к 2030 году.

Над выходом на гиперзвук бьется Франция. Китай недавно испытал планирующий аппарат WU-14, сумевший достичь гиперзвуковых скоростей. Ну и, конечно, Россия.

Гонка технологий

«Обычно сверхзвуковые крылатые ракеты летят на скорости 2-3 маха, - говорит кандидат физико-математических наук Николай Григорьев. - Мы хотим, чтобы наши аппараты летали со скоростью более 6 махов. При этом этот полет должен быть длительным. Не менее 7-10 минут, за которые аппарат должен самостоятельно развить скорость в более полутора тысяч метров в секунду».

Первый гиперзвуковой аппарат был создан в СССР еще в конце 70-х годов прошлого века. В 1997 году конструкторы дубнинского МКБ «Радуга» впервые показали его на авиасалоне МАКС. Представлен он был как система нового класса - гиперзвуковой экспериментальный летательный аппарат (ГЭЛА) Х-90. На Западе его называли AS-19 Koala. По данным предприятия, ракета летела на дальность до 3 тыс. км. Несла две боеголовки с индивидуальным наведением, способные поразить цели на удалении 100 км от точки разделения. Носителем Х-90 мог стать удлиненный вариант стратегического бомбардировщика Ту-160М.

В начале 90-х годов прошлого века МКБ провело совместную работу с немецкими инженерами по проблеме гиперзвука на базе другой своей ракеты Х-22 «Буря» (по классификации НАТО - AS-4 Kitchen («Кухня»). Эта сверхзвуковая крылата ракета входит в состав штатного вооружения дальнего бомбардировщика Ту-22М3. Может летать на 600 км и нести термоядерную или обычную боевую часть весом в 1 тонну. Ракета предназначена для уничтожения авианосцев США. В ходе эксперимента, при установленных на ракету дополнительных разгонных блоках машину удалось вывести на гиперзвуковой режим полета.

Кроме того, как напоминает Григорьев, в СССР был создан космический корабль многоразового использования «Буран», который при входе в плотные слои атмосферы развивал скорость в 25 махов. Сегодня, по словам эксперта, задача стоит в том, чтобы сделать подобный полет активным, то есть машина должна не просто «планировать», а самостоятельно развивать и поддерживать такую скорость, менять направление полета.

От «Коалы» до «Ярса»

Испытания гиперзвуковых аппаратов - тайна за семью печатями. Судить о том, как обстоят дела с их разработкой, можно только по сообщениям американцев об успехе или неудаче в ходе тех или иных испытательных пусков. Последний такой эксперимент они провели в августе. Пуск ракеты Х-43А был произведен с полигона Кодьяк на Аляске. Ракета разрабатывалась как совместный проект американской армии и лаборатории Sandia National в рамках концепции «Быстрого глобального удара». Ее первое испытание произошло в ноябре 2011 года. Предполагалось, что в ходе нынешних испытаний ракета, набрав скорость около 6,5 тыс. км/час, поразит учебную цель на тихоокеанском атолле Кваджалейн. В итоге аппарат проработал всего 7 секунд перед тем, как сгорел в атмосфере. Тем не менее, в США назвали этот полет успешным - машина продемонстрировала способность набрать требуемое ускорение.

Советская Х-90, о которой хоть что-то доподлинно известно, летала дальше и дольше. Как говорят конструкторы, машина быстро нагревалась от сопротивления воздуха, что разрушало аппарат или приводило в нерабочее состояние механизмы внутри корпуса. Для достижения гиперзвука для прямоточного реактивного ракетного двигателя требовался водород или хотя бы топливо, состоящее в значительной мере из водорода. А это крайне сложно осуществить технически, так как газообразный водород имеет малую плотность. Хранение жидкого водорода создавало другие непреодолимые технические сложности. Ну и, наконец, во время гиперзвукового полета вокруг Х-90 возникало плазменное облако, которое сжигало радиоантенны, что приводило к потере управляемости аппаратом.

Впрочем, эти недостатки в итоге превратили в достоинства. Проблему охлаждения корпуса и водородного топлива решили тем, что в качестве его компонентов стали использовать смесь керосина и воды. Она после нагрева подавалась в специальный каталитический мини-реактор, в котором проходила эндотермическая реакция каталитической конверсии, в результате которой вырабатывалось водородное топливо. Этот процесс приводил к сильному охлаждению корпуса аппарата. Не менее оригинально была решена проблема обгорания радиоантенн, в качестве которых стали использовать само плазменное облако.

При этом плазменное облако позволило аппарату не только двигаться в атмосфере со скоростью 5 км в секунду, но и делать это «ломаными» траекториями. Машина могла резко менять направление полета. Кроме того, плазменное облако еще и создавало эффект невидимости аппарата для радаров. Х-90 не поступила на вооружение, работа над ракетой была приостановлена еще в 1992 году.

Но принципы ее работы очень похожи на описание действий маневрирующих ядерных боеголовок баллистических ракет «Тополь-М», «Ярс» и новой РС-26. Минобороны неоднократно приводило их, как пример преодоления любой системы противоракетной обороны. Маневрирующий блок в любую секунду может «вильнуть», непредсказуемо изменив направление полета, что гарантированно обеспечивает поражение цели. Ни одна система НПРО не способна просчитать такую траекторию и навести на атакующий блок противоракеты.

Боевой «Утконос»

В прошлом году в Минобороны сообщили, что гиперзвуковым оружием будут оснащать, в первую очередь, самолеты дальней авиации. На тот момент ракеты уже существовали, правда, их полет на гиперзвуке продолжался всего несколько секунд. Об этом неоднократно заявлял и вице-премьер Дмитрий Рогозин. Однако каких либо конкретных деталей ни военные, ни вице-премьер, ни представители промышленности не приводили.

О текущих успехах в создании гиперзвуковых летательных аппаратов можно судить только по косвенным признакам. Например, этим летом корпорация «Тактическое ракетное вооружение», Минобороны и Минпромторг отчитались, что согласовали программу создания гиперзвуковых ракетных технологий. В разработку перспективной техники будет вложено более 2 млрд. рублей, а первый аппарат появится не позднее 2020 года. Что это будут за аппараты, какие характеристики будут иметь и для каких целей не объявляется.

О том, что задел, что называется, имеется, можно судить хотя бы по выставке МАКС в подмосковном Жуковском. В 2011 году Центральный институт авиационного моторостроения из подмосковного Лыткарино демонстрировал целый ряд перспективных гиперзвуковых аппаратов. На стенде института были выставлены несколько макетов перспективных ракет, больше похожих не на классические сигарообразные ракеты, а на шедевр скульптора авангардиста, взявшего в прообраз своего творения австралийского зверька утконоса - расплющенный лопатовидный «нос» обтекателя, рубленные формы самого корпуса ракет. Тогда представитель института Вячеслав Семенов сообщил, что в 2012 году Минобороны будет представлен полностью годный летный образец гиперзвуковой крылатой ракеты. Об этом же говорил и Борис Обносов. О чем конкретно шла речь - неизвестно. Никаких официальных сообщений о новой ракете в печати не было. Однако неоднократно проскакивало название перспективного комплекса «Циркон».

По косвенным признакам в его основу входит ракета, созданная на базе сверхзвуковой противокорабельной ракеты «Яхонт» и ее российско-индийского аналога «БраМос». Индийская BrahMos Aerospace Limited неоднократно анонсировала работы по созданию гиперзвукового варианта своей продукции. Демонстрировал ее макет все тот же «Утконос».

В будущем ракеты "Циркон" установят на новейшие российские многоцелевые атомные подводные лодки пятого поколения "Хаски", которые сейчас находятся в разработке в конструкторском бюро "Малахит". Ракетный крейсер «Адмирал Нахимов», проходящий ремонт с модернизацией в Северодвинске, к 2018 году оснастят универсальным корабельным стрельбовым комплексом, позволяющим применять ракеты «Калибр», «Оникс» и перспективные гиперзвуковые ПКР «Циркон».


источники

Перспективный российский бомбардировщик – ответ на концепцию быстрого глобального удара?

Соревнование за освоение авиацией гиперзвуковых скоростей началось ещё во времена Холодной войны. В те годы конструкторы и инженеры СССР, США и других развитых стран проектировали новые самолёты, способные летать в 2-3 раза быстрее скорости звука. Гонка за скоростью породила множество открытий в области аэродинамики полётов в атмосфере и быстро достигла пределов физических возможностей пилотов и стоимости изготовления летательного аппарата.

В итоге первыми гиперзвук освоили ракетные конструкторские бюро в своих детищах - межконтинентальных баллистических ракетах (МБР) и ракетах-носителях. При выводе на околоземные орбиты спутников ракеты развивали скорость 18000 – 25000 км/час. Это намного превышало предельные параметры самых быстрых сверхзвуковых самолетов, как гражданских (Конкорд = 2150 км/ч, Ту-144 = 2300 км/ч), так и военных (SR-71 = 3540 км/час, МиГ-31 = 3000 км/час).

Отдельно хочется отметить, что при проектировании сверхзвукового перехватчика МиГ-31 авиаконструктор Г.Е. Лозино-Лозинский использовал в конструкции планера передовые материалы (титан, молибден и др.), что позволило самолету достигнуть рекордной высоты пилотируемого полёта (МиГ-31Д) и максимальной скорости в 7000 км/час в верхних слоях атмосферы. В 1977 году летчик-испытатель Александр Федотов установил на его предшественнике МиГ-25 абсолютный мировой рекорд высоты полета – 37650 метров (для сравнения, у SR-71 максимальная высота полета составила 25929 метров). К сожалению, двигатели для полетов на больших высотах в условиях сильно разреженной атмосферы тогда ещё не были созданы, так как эти технологии только разрабатывались в недрах советских НИИ и КБ в рамках многочисленных экспериментальных работ.

Новым этапом в развитии технологий гиперзвука стали исследовательские проекты по созданию авиационно-космических систем, которые совмещали в себе возможности авиации (пилотаж и манёвр, посадка на ВПП) и космических аппаратов (выход на орбиту, орбитальный полет, спуск с орбиты). В СССР и США эти программы отработали частично, явив миру космические орбитальные самолёты «Буран» и «Спейс Шаттл».

Почему частично? Дело в том, что вывод летательного аппарата на орбиту осуществлялся с помощью ракеты-носителя. Стоимость вывода была огромной, порядка 450 миллионов долларов (по программе «Спейс Шаттл»), что в разы превышало стоимость самых дорогих гражданских и военных самолётов, не позволяло сделать орбитальный самолёт массовым изделием. Необходимость вложения гигантских средств в создание инфраструктуры, обеспечивающей сверхбыстрые межконтинентальные перелёты (космодромы, центры управления полётом, топливно-заправочные комплексы) окончательно похоронила перспективу пассажирских перевозок.

Единственным заказчиком, хоть как-то заинтересованным в гиперзвуковых аппаратах, остались военные. Правда, этот интерес носил эпизодический характер. Военные программы СССР и США по созданию авиационно-космических самолётов шли разными путями. Наиболее последовательно они были реализованы всё-таки в СССР: от проекта по созданию ПКА (планирующего космического аппарата) до МАКС (многоцелевая авиационная космическая система) и «Бурана» была выстроена последовательная и непрерывная цепочка научно-технических заделов, на основании которых создавался фундамент будущих экспериментальных полётов прототипов гиперзвуковых самолётов.

Ракетные КБ продолжали совершенствовать свои МБР. С появлением современных комплексов ПВО и ПРО, способных сбивать боевые части МБР на большом удалении, к поражающим элементам баллистических ракет стали предъявлять новые требования. Боеголовки новых МБР должны были преодолевать противовоздушную и противоракетную оборону противника. Так появились боевые части, способные преодолевать ВКО на гиперзвуковых скоростях (М=5-6).

Отработка гиперзвуковых технологий для боевых частей (боеголовок) МБР позволила начать несколько проектов по созданию оборонного и наступательного гиперзвукового оружия - кинетического (рельсотрон), динамического (крылатые ракеты) и космического (удар с орбиты).

Активизация геополитического соперничества США с Россией и Китаем реанимировала тему гиперзвука как перспективного инструмента, способного обеспечить преимущество в сфере космических и ракетно-авиационных вооружений. Повышение интереса к этим технологиям обусловлено и концепцией нанесения максимального ущерба противнику обычными (не ядерными) средствами поражения, которая фактически реализуется странами НАТО во главе с США.

Действительно, если в распоряжении военного командования будет хотя бы сотня гиперзвуковых аппаратов в неядерном оснащении, которые легко преодолевают существующие системы ПВО и ПРО, то этот «последний довод королей» напрямую влияет на стратегический баланс между ядерными державами. Мало того, гиперзвуковая ракета в перспективе может уничтожать элементы стратегических ядерных сил как с воздуха, так и из космоса в сроки не более часа от момента принятия решения до момента поражения цели. Именно такая идеология заложена в американской военной программе Prompt Global Strike (быстрый глобальный удар).

Осуществима ли подобная программа на практике? Аргументы «за» и «против» разделились примерно поровну. Давайте разберёмся.

Американская программа Prompt Global Strike

Концепция Prompt Global Strike (PGS) принята в 2000-е годы по инициативе командования ВС США. Её ключевым элементом является возможность нанести неядерный удар по любой точке земного шара в течение 60 минут после принятия решения. Работы в рамках этой концепции ведутся одновременно по нескольким направлениям.

Первым направлением PGS, и наиболее реалистичным с технической точки зрения, стало использование МБР с высокоточными неядерными боевыми блоками, в том числе с кассетными, которые оснащаются набором самонаводящихся суббоеприпасов. В качестве отработки этого направления была выбрана МБР морского базирования Trident II D5, доставляющая поражающие элементы на максимальную дальность 11300 километров. В данное время идут работы по снижению КВО боеголовок до значений в 60-90 метров.

Вторым направлением PGS выбраны стратегические гиперзвуковые крылатые ракеты (СГКР). В рамках принятой концепции реализуется подпрограмма X-51A Waverider (SED-WR). По инициативе ВВС США и поддержке DARPA с 2001 года разработку гиперзвуковой ракеты ведут фирмы Pratt & Whitney и Boeing.

Первым результатом проводящихся работ должно стать появление к 2020 году демонстратора технологий с установленным гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД). По оценкам экспертов СГКР с этим двигателем может иметь следующие параметры: скорость полёта М = 7–8, максимальная дальность полета 1300-1800 км, высота полета 10-30 км.

В мае 2007 года после детального рассмотрения хода работ по X-51A «WaveRider» военные заказчики утвердили проект ракеты. Экспериментальная СГКР Boeing X-51A WaveRider представляет собой классическую крылатую ракету с подфюзеляжным ГПВРД и четырехконсольным хвостовым оперением. Материалы и толщина пассивной теплозащиты выбирались в соответствии с расчетными оценками тепловых потоков. Носовой модуль ракеты выполнен из вольфрама с кремниевым покрытием, который выдерживает кинетический нагрев до 1500°С. На нижней поверхности ракеты, где ожидаются температуры до 830°С, используются керамические плитки, разработанные Boeing ещё для программы «Спейс Шаттл». Ракета X-51A должна отвечать высоким требованиям по малозаметности (ЭПР не более 0,01 м 2). Для разгона изделия до скорости, соответствующей M = 5 планируется установка тандемного ракетного ускорителя на твердом топливе.

В качестве основного носителя СГКР предполагается использовать самолеты стратегической авиации США. Пока нет сведений о том, как будут размещаться эти ракеты – под крылом или внутри фюзеляжа «стратега».

Третьим направлением PGS являются программы по созданию систем кинетического оружия, поражающего цели с орбиты Земли. Американцы подробно рассчитали результаты боевого применение стержня из вольфрама длиной около 6 метров и диаметром 30 см, сброшенного с орбиты и поражающего наземный объект на скорости порядка 3500 м/с. Согласно расчётам, в точке встречи высвободится энергия, эквивалентная взрыву 12 тонн тринитротолуола (тротила).

Теоретическое обоснование дало старт проектам двух гиперзвуковых аппаратов (Falcon HTV-2 и AHW), которые будут запускаться на орбиту ракетами-носителями и в боевом режиме смогут планировать в атмосфере с наращиванием скорости при подлёте к цели. Пока эти разработки находятся на стадии эскизного проектирования и экспериментальных пусков. Основными проблемными вопросами пока остаются системы базирования в космосе (космические группировки и боевые платформы), системы высокоточного наведения на цель и обеспечение скрытности выведения на орбиту (любой запуск и орбитальные объекты вскрываются российскими системами предупреждения о ракетном нападении и контроля космического пространства). Проблему скрытности американцы надеются решить после 2019 года, с запуском в эксплуатацию многоразовой авиационной космической системы, которая будет выводить полезную нагрузку на орбиту «по самолётному», посредством двух ступеней – самолёта-носителя (на основе Боинг 747) и беспилотного космического самолёта (на основе прототипа аппарата Х-37В).

Четвертым направлением PGS является программа по созданию беспилотного гиперзвукового самолёта - разведчика на базе известного Lockheed Martin SR-71 Blackbird.

Подразделение Lockheed - компания Skunk Works, в настоящее время разрабатывает перспективный БПЛА под рабочим название SR-72, который должен в два раза превысить максимальную скорость SR-71, достигнув значений около М = 6.

Разработка гиперзвукового разведчика вполне оправдана. Во-первых, SR-72 из-за своей колоссальной скорости будет малоуязвим для систем ПВО. Во-вторых, он заполнит «пробелы» в работе спутников, оперативно добывая стратегическую информацию и обнаруживая мобильные комплексы МБР, соединения кораблей, группировки сил противника на ТВД.

Рассматриваются два варианта самолета SR-72 - пилотируемый и беспилотный, также не исключается использование его в качестве ударного бомбардировщика, носителя высокоточного оружия. Скорее всего, в качестве вооружения могут использоваться облегченные ракеты без маршевого двигателя, поскольку при запуске на скорости в 6 М он не нужен. Высвобождающийся вес, вероятно, будет использован для увеличения могущества БЧ. Лётный прототип самолёта Lockheed Martin планирует показать в 2023 году.

Китайский проект гиперзвукового самолёта DF-ZF

27 апреля 2016 года американское издание «Washington Free Beacon» со ссылкой на источники в Пентагоне сообщило миру о седьмом испытании гиперзвукового китайского летательного аппарата DZ-ZF. Летательный аппарат был запущен с космодрома Тайюань (провинция Шаньси). По данным газеты самолёт совершал манёвры на скорости от 6400 до 11200 км/ч, и упал на полигоне в Западном Китае.

«По оценке разведки Соединенных Штатов, КНР планирует использовать гиперзвуковой самолёт в качестве средства доставки ядерных зарядов, способного преодолевать системы ПРО, - отметило издание. - DZ-ZF также может использоваться в качестве оружия, способного уничтожить цель в любой точке мира в течение часа».

Согласно анализу проведённому разведкой США всей серии испытаний - запуски гиперзвукового самолёта осуществлялись баллистическими ракетами малой дальности DF-15 и DF-16 (дальность до 1000 км), а также средней дальности DF-21 (дальность 1800 км). Не исключалась дальнейшая отработка запусков на МБР DF-31А (дальность 11200 км). По программе испытаний известно следующее: отделяясь от носителя в верхних слоях атмосферы, аппарат конусообразной формы с ускорением планировал вниз и маневрировал на траектории выхода на цель.

Несмотря на многочисленные публикации иностранных СМИ о том, что китайский гиперзвуковой летательный аппарат (ГЛА) предназначен для поражения американских авианосцев, китайские военные эксперты отнеслись к таким заявлениям скептически. Они указали на общеизвестный факт, что сверхзвуковая скорость ГЛА создаёт вокруг аппарата облако плазмы, которое мешает работе бортовой РЛС при корректировке курса и наведении на такую подвижную цель, как авианосец.

Как заявил в интервью China Daily профессор Командного колледжа ракетных войск НОАК полковник Шао Юнлин: «Сверхвысокая скорость и дальность делает его (ГЛА) превосходным средством уничтожения наземных целей. Он, в перспективе, может заменить межконтинентальные баллистические ракеты».

Согласно докладу профильной комиссии Конгресса США, DZ-ZF может быть принят на вооружение НОАК в 2020 году, а его усовершенствованная дальнобойная версия - к 2025 году.

Научно-технический задел России – гиперзвуковые самолёты

Гиперзвуковой Ту-2000

В СССР работы над гиперзвуковым самолётом начались в ОКБ Туполева в середине 1970-х годов, на основе серийного пассажирского самолёта Ту-144. Проводилось исследование и проектирование самолёта, способного развивать скорость до М=6 (ТУ-260) и дальностью полёта до 12000 км, а также гиперзвукового межконтинентального самолёта ТУ-360. Его дальность полёта должны была достигать 16000 км. Был даже подготовлен проект пассажирского гиперзвукового самолёта Ту-244, рассчитанного на полёт на высоте 28-32 км со скоростью М=4,5-5.

В феврале 1986 года в США начался НИОКР по создание космоплана Х-30 с воздушно-реактивной силовой установкой, способного выходить на орбиту в одноступенчатом варианте. Проект National Aerospace Plane (NASP), отличался обилием новых технологий, ключевой из которых был двухрежимный гиперзвуковой прямоточный воздушно-реактивный двигатель, позволяющий летать на скоростях М=25. По полученным разведкой СССР сведениям, NASP прорабатывался для гражданских и военных целей.

Ответом на разработку трансатмосферного X-30 (NASP) стали постановления правительства СССР от 27 января и 19 июля 1986 о создании эквивалента американскому воздушно-космическому самолёту (ВКС). 1 сентября 1986 года Министерство обороны выпустило техническое задание на одноступенчатый многоразовый воздушно-космический самолет (МВКС). По этому техзаданию МВКС должен был обеспечить эффективную и экономичную доставку на околоземную орбиту грузов, высокоскоростную трансатмосферную межконтинентальную транспортировку, решение военные задач, как в атмосфере, так и в ближнем космическом пространстве. Из представленных на конкурс работ ОКБ Туполева, ОКБ Яковлева и НПО «Энергия» одобрение получил проект Ту-2000.

В результате предварительных исследований по программе МВКС выбиралась силовая установка на основе отработанных и проверенных решений. Существующие воздушно-реактивные двигатели (ВРД), использовавшие атмосферный воздух, имели ограничения по температуре, они использовались на самолётах, скорость которых не превышала М=3, а ракетные двигатели должны были нести большой запас топлива на борту и не годились для продолжительных полётов в атмосфере. Поэтому было принято важное решение – чтобы самолёт мог летать на сверхзвуковых скоростях и на всех высотах, его двигатели должны иметь черты и авиационной, и космической техники.

Оказалось, что наиболее рациональным для гиперзвукового самолёта является прямоточный воздушно-реактивный двигатель (ПВРД), в котором нет вращающихся частей, в комбинации с турбореактивным двигателем (ТРД) для разгона. Предполагалось, что для полётов с гиперзвуковыми скоростями наиболее подходит ПВРД на жидком водороде. А разгонный двигатель - это ТРД работающий или на керосине, или на жидком водороде.

В результате, за рабочий вариант была принята комбинация экономичного ТРД, работающего в диапазоне скоростей М=0-2,5, второго двигателя - ПВРД, разгоняющего летательный аппарат до М=20 и ЖРД для выхода на орбиту (разгон до первой космической скорости 7,9 км/с) и обеспечения орбитальных манёвров.

Из-за сложности решения комплекса научно-технических и технологических задач по созданию одноступенчатого МВКС программа была разбита на два этапа: создание экспериментального гиперзвукового самолета со скоростью полета до М=5-6, и разработка прототипа орбитального ВКС, обеспечивающего проведение лётного эксперимента во всём диапазоне полетов, вплоть до выхода в космос. Помимо этого на втором этапе работ МВКС намечалось создать варианты космического бомбардировщика Ту-2000Б, который проектировался как двухместный самолёт с дальностью полёта 10000 км и взлетным весом 350 тонн. Шесть двигателей с питанием на жидком водороде должны были обеспечить скорость М=6-8 на высоте в 30-35 км.

По данным специалистов ОКБ им. А.Н.Туполева, стоимость постройки одного ВКС должна была составить около 480 млн. долларов, в ценах 1995 года (при затратах на ОКР 5,29 млрд. долларов). Предполагаемая стоимость запуска должна была составить 13,6 млн. долларов, при количестве 20 пусков в год.

Первый раз макет самолета Ту-2000 был показан на выставке «Мосаэрошоу-92». До остановки работ в 1992 году, для Ту-2000 были изготовлены: кессон крыла из никелевого сплав, элементы фюзеляжа, криогенные топливные баки и композитные топливопроводы.

Атомный М-19

Давний «конкурент» по стратегическим летательным аппаратам ОКБ им. Туполева – Экспериментальный машиностроительный завод (сейчас ЭМЗ им. Мясищева) также занимался разработками одноступенчатого ВКС в рамках НИОКР «Холод-2». Проект получил название «М-19» и предусматривал проработку по следующим темам:

  • Тема 19-1. Создание летающей лаборатории с силовой установкой на жидком водородном топливе, отработка технологии работ с криогенным топливом;
  • Тема19-2. Проектно-конструкторские работы по определению облика гиперзвукового самолета;
  • Тема 19-3. Проектно-конструкторские работы по определению облика перспективного ВКС;
  • Тема 19-4. Проектно-конструкторские работы по определению облика альтернативных вариантов ВКС с ядерной двигательной установкой.

Работы по перспективному ВКС проводились под непосредственным руководством Генерального конструктора В.М. Мясищева и Генерального конструктора А.Д. Тохунца. Для выполнения составных частей НИОКР были утверждены планы совместных работ с предприятиями МАП СССР, в том числе: ЦАГИ, ЦИАМ, НИИАС, ИТПМ и многими другими, а также с НИИ Академии наук и Министерства обороны.

Облик одноступенчатого ВКС М-19 определился после исследования многочисленных альтернативных вариантов аэродинамической компоновки. В части исследований характеристик силовой установки нового типа проводились испытания моделей ГПВРД в аэродинамических трубах на скоростях, соответствующих числам М=3-12. Для оценки эффективности будущего ВКС были также проработаны математические модели систем аппарата и комбинированной силовой установки с ядерным ракетным двигателем (ЯРД).

Использование ВКС с комбинированной ядерной двигательной установкой предполагало расширенные возможности интенсивного освоения как околоземного космического пространства, включая удаленные геостационарные орбиты, так и области дальнего космоса, в том числе Луну и окололунное пространство.

Наличие на борту ВКС ядерной установки позволяло бы также использовать её в качестве мощного энергетического узла для обеспечения функционирования новых типов космического оружия (лучевое, пучковое оружие, средства воздействия на климатические условия и т. п.).

Комбинированная двигательная установка (КДУ) включала в себя:

  • Маршевый ядерный ракетный двигатель (ЯРД) на основе ядерного реактора с радиационной защитой;
  • 10 двухконтурных турбореактивных двигателей (ДТРДФ) с теплообменниками во внутреннем и наружном контурах и форсажной камерой;
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД);
  • Два турбокомпрессора для обеспечения прокачки водорода через теплообменники ДТРДФ;
  • Распределительный узел с турбонасосными агрегатами, теплообменниками и вентилями трубопроводов, системы регулирования подачи топлива.

В качестве топлива для ДТРДФ и ГПВРД использовался водород, он же являлся и рабочим телом в замкнутом контуре ЯРД.

В завершенном виде концепция М-19 выглядела так: взлет и первоначальный разгон 500-тонный ВКС совершает как атомный самолёт с двигателями замкнутого цикла, причем в качестве теплоносителя, передающего тепло от реактора к десяти турбореактивным двигателям, служит водород. По мере разгона и набора высоты, водород начинает подаваться в форсажные камеры ТРД, чуть позже в прямоточные ГПРВД. Наконец, на высоте 50 км, при скорости полёта более 16М, включается атомный ЯРД с тягой 320 тс, который обеспечивал выход на рабочую орбиту высотой 185-200 километров. При взлетной массе около 500 тонн ВКС М-19 должен был выводить на опорную орбиту с наклонением 57,3° полезную нагрузку массой порядка 30-40 тонн.

Необходимо отметить малоизвестный факт, что при расчетах характеристик КДУ на турбопрямоточном, ракетно-прямоточном и гиперзвуковом режимах полета использовались результаты экспериментальных исследований и расчетов, проведенных в ЦИАМ, ЦАГИ и ИТПМ СО АН СССР.

Аякс» - гиперзвук по-новому

Работы по созданию гиперзвукового самолёта проводились и в СКБ «Нева» (г. Санкт-Петербург), на основе которого было образовано Государственное научно-исследовательское предприятие гиперзвуковых скоростей (ныне ОАО «НИПГС» ХК «Ленинец»).

В НИПГС к созданию ГЛА подошли принципиально по-новому. Концепция ГЛА «Аякс» была выдвинута в конце 80-х гг. Владимиром Львовичем Фрайштадтом. Суть её состоит в том, что у ГЛА отсутствует тепловая защита (в отличие от большинства ВКС и ГЛА). Тепловой поток, возникающий при гиперзвуковом полёте, впускается внутрь ГЛА для повышения его энергоресурса. Таким образом, ГЛА «Аякс» представлял собой открытую аэротермодинамическую систему, которая часть кинетической энергии гиперзвукового воздушного потока преобразовывала в химическую и электрическую, попутно решая вопрос с охлаждением планера. Для этого были спроектированы основные компоненты реактора химической регенерации тепла с катализатором, размещаемыми под обшивкой планера.

Обшивка самолета в наиболее термонапряженных местах имела двухслойную оболочку. Между слоями оболочки размещался катализатор из термостойкого материала («мочалки из никеля»), который представлял собой подсистему активного охлаждения с реакторами химической регенерации тепла. Согласно расчётам, при всех режимах гиперзвукового полета температура элементов планера ГЛА не превышала 800-850°С.

В состав ГЛА входит интегрированный с планером прямоточный воздушно-реактивный двигатель со сверхзвуковым горением и основной (маршевый) двигатель - магнито-плазмохимический двигатель (МПХД). МПХД предназначался для управления воздушным потоком, с помощью магнито-газодинамического ускорителя (МГД-ускорителя) и выработки электроэнергии с помощью МГД-генератора. Генератор имел мощность до 100 МВт, что вполне хватало для питания лазера, способного поражать на околоземных орбитах различные цели.

Предполагалось, что маршевый МПХД будет способен изменять скорость полёта в широком диапазоне полетного числа Маха. За счет торможения гиперзвукового потока магнитным полем создавались оптимальные условия в сверхзвуковой камере сгорания. При испытаниях в ЦАГИ было выявлено, что созданное в рамках концепции «Аякс» углеводородное топливо сгорает в несколько раз быстрее, чем водород. МГД-ускоритель мог «разгонять» продукты сгорания, увеличивая максимальную скорость полета до М=25, что гарантировало выход на околоземную орбиту.

Гражданский вариант гиперзвукового самолёта рассчитывался на скорость полёта 6000-12000 км/ч, дальность полёта - до 19000 км и перевозку 100 пассажиров. О военных разработках проекта «Аякс» сведений нет.

Российская концепция гиперзвука – ракеты и ПАК ДА

Работы, проведенные в СССР и в первые годы существования новой России по гиперзвуковым технологиям позволяют утверждать, что оригинальная отечественная методология и научно-технический задел сохранены и задействованы для создания российских ГЛА – как в ракетном, так и самолётном исполнении.

В 2004-м году, во время проведения командно-штабных учений «Безопасность 2004», президент России В.В. Путин сделал заявление, до сих пор будоражащее умы «общественности». «Были проведены эксперименты и кое-какие испытания… Вскоре российские Вооруженные силы получат боевые комплексы, способные действовать на межконтинентальных расстояниях, с гиперзвуковой скоростью, с большой точностью, с широким манёвром по высоте и направлению удара. Эти комплексы сделают бесперспективными любые образцы противоракетной обороны – существующие или перспективные» .

Некоторые отечественные СМИ интерпретировали это заявление в меру своего понимания. Например: «В России была разработана первая в мире гиперзвуковая маневрирующая ракета, запуск которой был произведен со стратегического бомбардировщика Ту-160 в феврале 2004 года, когда проводились командно-штабные учения «Безопасность 2004»…


На самом деле на учениях было запущена баллистическая ракета РС-18 «Стилет» с новым боевым оснащением. Вместо обычной боеголовки на РС-18 находилось некое устройство, способное менять высоту и направление полета, и, тем самым, преодолевать любую, в том числе американскую, противоракетную оборону. Судя по всему, испытанный во время учений «Безопасность 2004» аппарат являлся малоизвестной гиперзвуковой крылатой ракетой (ГКР) Х-90, разработанной в МКБ «Радуга» в начале 1990-х годов.

Судя по ТТХ этой ракеты, стратегический бомбардировщик Ту-160 может брать на борт две Х-90. Остальные же характеристики выглядят так: масса ракеты - 15 тонн, маршевый двигатель - ГПВРД, ускоритель - РДТТ, скорость полета – 4-5 М, высота пуска – 7000 м, высота полёта – 7000-20000 м, дальность пуска 3000-3500 км, число боеголовок - 2, мощность боеголовки - 200 кт.

В споре о том, что лучше самолёт или ракета, чаще всего проигрывали самолёты, так как ракеты оказывались быстрее и результативнее. А самолёт стал носителем крылатых ракет, способных поражать цели на расстоянии 2500-5000 км. Запуская ракету по цели, стратегический бомбардировщик не заходил в зону противодействующей ПВО, поэтому делать его гиперзвуковым не имело смысла.

«Гиперзвуковое соревнование» между самолётом и ракетой сейчас близится к новой развязке с предсказуемым результатом - ракеты вновь опережают самолёты.

Оценим ситуацию. На вооружении дальней авиации, входящей в ВКС России, состоят 60 турбовинтовых самолётов Ту-95МС и 16 реактивных бомбардировщиков Ту-160. Срок службы Ту-95МС истекает через 5-10 лет. Министерство обороны приняло решение об увеличение количества Ту-160 до 40 единиц. Ведутся работы по модернизации Ту-160. Таким образом, в ВКС скоро начнут поступать новые Ту-160М. ОКБ Туполева также является основным разработчиком перспективного авиационного комплекса дальней авиации (ПАК ДА).

Наш «вероятный противник» не сидит, сложа руки, он вкладывает деньги в развитие концепции Prompt Global Strike (PGS). Возможности военного бюджета США по объёму финансирования значительно превышают возможности бюджета России. Министерство финансов и Министерство обороны спорят о размере финансирования Госпрограммы вооружений на период до 2025 года. И речь идёт не только о текущих расходах на закупку нового ВВТ, но и о перспективных разработках, к которым относятся ПАК ДА и технологии ГЛА.

В создании гиперзвуковых боеприпасов (ракеты или снаряда) не всё однозначно. Явное преимущество гиперзвука – скорость, короткое время подлёта к цели, высокая гарантия преодоления систем ПВО и ПРО. Однако немало и проблем – дороговизна одноразового боеприпаса, сложность управления при изменении траектории полёта. Эти же недостатки стали решающими аргументами при сокращении или закрытии программ по пилотируемому гиперзвуку, то есть по гиперзвуковым самолётам.

Проблема дороговизны боеприпаса может решаться решается наличием на борту самолёта мощного вычислительного комплекса расчётов параметров бомбометания (пуска), который превращает обычные бомбы и ракеты в высокоточное оружие. Аналогичные бортовые вычислительные комплексы, установленные в боеголовках гиперзвуковых ракет, позволяют приравнять их к классу стратегического высокоточного оружия, которое, по мнению военных специалистов НОАК, способно заменить комплексы МБР. Наличие ракетных ГЛА стратегической дальности поставит под вопрос необходимость содержания дальней авиации, как имеющей ограничения по скорости и эффективности боевого применения.

Появление в арсенале любой армии гиперзвуковой зенитной ракеты (ГЗР) вынудит стратегическую авиацию «прятаться» на аэродромах, т.к. максимальное расстояние, с которого могут применяться крылатые ракеты бомбардировщика, такие ГЗР преодолеют за несколько минут. Повышение дальности, точности и манёвренности ГЗР позволит им сбивать МБР противника на любых высотах, а также срывать массированный налёт стратегических бомбардировщиков до выхода их на рубежи пуска крылатых ракет. Пилот «стратега», возможно и обнаружит запуск ГЗР, но увести самолёт от поражения вряд ли успеет.

Разработки ГЛА, которые сейчас интенсивно ведутся в развитых странах, свидетельствуют, что ведется поиск надежного инструмента (оружия), которое может гарантированно уничтожить ядерный арсенал противника до начала применения ядерного оружия, как последнего аргумента при защите государственного суверенитета. Гиперзвуковое оружие может применяться и по основным центрам политического, экономического и военного могущества государства.

Гиперзвук в России не забыт, идут работы по созданию ракетного оружия на основе этой технологии (МБР «Сармат», МБР «Рубеж», Х-90), но делать ставку только на один вид вооружения («чудо-оружие», «оружия возмездия») было бы, как минимум, не правильно.

В создании ПАК ДА ясности нет до сих пор, так как до сих пор неизвестны основные требования по его назначению и боевому применению. Существующие стратегические бомбардировщики, как составляющие ядерной триады России, постепенно теряют свое значение из-за появления новых видов оружия, в том числе и гиперзвукового.

Курс на «сдерживание» России, провозглашенный главной задачей НАТО, объективно способен привести к агрессии против нашей страны, в которой будут участвовать подготовленные и вооружённые современными средствами армии «Североатлантического договора». По количеству личного состава и вооружений НАТО превосходит Россию в 5–10 раз. Вокруг России выстраивается «санитарный пояс», включающий военные базы и позиции ПРО. По сути, проводимые НАТО мероприятия в военных терминах описывается как оперативная подготовка театра военных действий (ТВД). При этом главным источником поставок вооружений остаётся США, как было и в Первую, и Второю мировые войны.

Гиперзвуковой стратегический бомбардировщик может в течение часа оказаться в любой точке земного шара над любым военным объектом (базой), с которого обеспечивается снабжение ресурсами группировок войск, в том числе и в «санитарном поясе». Малоуязвимы для систем ПРО и ПВО, он может уничтожить такие объекты мощным высокоточным неядерным оружием. Наличие такого ГЛА в мирное время станет дополнительным сдерживающим фактором для сторонников глобальных военных авантюр.

Гражданский ГЛА может стать технической основой прорыва в развитии межконтинентальных перелётов и космических технологий. Научно-технический задел проектов Ту-2000, М-19 и «Аякс» по-прежнему актуален и может быть востребован.

Каким же будет будущий ПАК ДА – дозвуковым с СГКР или гиперзвуковым с доработанным обычным оружием, решать заказчикам – Министерству обороны и Правительству России.

«Кто ещё до сражения побеждает предварительным расчетом, у того шансов много. Кто ещё до сражения не побеждает расчетом, у того шансов мало. У кого шансов много – побеждает. У кого шансов мало – не побеждает. Тем более тот, у кого шансов нет вовсе». /Сунь Цзы, «Искусство войны»/

Военный эксперт Алексей Леонков

  • по ссылке .
    Стоимость годовой подписки -
    12 000 руб.

Сначала стоит конечно определиться, гиперзвук это сколько? Принято считать, что гиперзвуковая скорость, это скорость выше 5 М, то есть больше пяти , а если совсем просто, то это скорость в пять раз превышающая скорость звука.

Вам интересно сколько это в километрах в час? От 5380 км/ч до 6120 км/ч в зависимости от параметров среды (для самолета - воздуха), то есть от плотности воздуха которая разная на разных высотах полета. Так что, для простоты восприятия, все таки лучше пользоваться числами Маха. Если скорость воздушного судна превысила значение 5 М - это гиперзвуковая скорость.

Собственно почему именно 5 М? Значение 5 было выбрано потому, что при такой скорости начинают наблюдаться ионизация потока газа и другие физические изменения, что конечно влияет на его свойства.

Эти изменения особенно заметны для двигателя, обычные ТРД (турбореактивные двигатели) просто не могут работать на такой скорости, нужен принципиально иной двигатель, ракетный или прямоточный (хотя на самом деле он и не такой уж другой, просто в нем отсутствует компрессор и турбина, а свою функцию он выполняет так же: сжимает воздух на входе, смешивает его с топливом, сжигает в камере сгорания, и получает реактивную струю на выходе).

Фактически, прямоточный двигатель, это труба с камерой сгорания, очень просто и эффективно на большой скорости. Вот только у такого двигателя есть огромный недостаток, ему для работы нужна определенная начальная скорость (своего компрессора то нет, нечем сжимать воздух на малой скорости).

История скорости

В 50-е годы шла борьба за достижения скорости звука. Когда инженеры и ученые поняли, как ведет себя самолет при скорости выше скорости звука и научились создавать летательные аппараты предназначенные для таких полетов, пришло время идти дальше. Заставить самолеты летать еще быстрее.

В 1967 году американский экспериментальный летательный аппарат X-15 достиг скорости 6,72 М (7274 км/ч). Он был оснащен ракетным двигателем и летал на высотах от 81 до 107 км (100 км, это линия Кармана, условная граница атмосферы и космоса). Поэтому, правильнее называть X-15 не самолетом, а ракетопланом. Взлететь самостоятельно он не мог, ему требовался самолет-разгонщик. Но все таки, это был гиперзвуковой полет. Причем, летали X-15 с 1962 по 1968 годы, а 7 полетов на X-15 совершил тот самый Нил Армстронг.

Стоит понимать, что полеты вне атмосферы, какими бы быстрыми они не были не корректно считать гиперзвуковыми, ведь плотность среды в которой движется летательный аппарат очень мала. Эффектов присущих сверхзвуковому или гиперзвуковому полету просто не будет.

В 1965 году YF-12 (прототип знаменитого SR-71) достиг скорости 3,331,5 км/ч, а в 1976 уже сам серийный SR-71 - 3,529,6 км/ч. Это «всего лишь» 3,2–3,3 М. Далеко не гиперзвук, но уже для полетов на этой скорости в атмосфере пришлось разрабатывать специальные двигатели, которые на малых скоростях работали в обычном режиме, а на высоких в режиме прямоточного двигателя, а для пилотов - специальные системы жизнеобеспечения (скафандры и системы охлаждения), так как самолет нагревался слишком сильно. Позднее, эти скафандры использовались для проекта Шаттл. Очень долгое время SR-71 являлся самым скоростным самолетом в мире (летать он перестал в 1999 году).

Советский Миг-25Р теоретически мог достичь скорости в 3,2 М, но эксплуатационная скорость ограничивалась значением 2,83 М.

В те же 60-е в США и СССР существовали проекты космических проектов X-20 «Dyna Soar» и «Спираль» соответственно. Для Спирали изначально предполагалось использование гиперзвукового самолета-разгонщика, потом сверхзвукового, а потом проект вообще закрыли. Та же судьба постигла и американский проект.

Вообще проекты именно гиперзвуковых летательных аппаратов того времени были связны с полетами вне атмосферы. Иначе и быть не может, на «малых» высотах слишком высока плотность и соответственно сопротивление, что приводит ко многим негативным факторам, которые в то время преодолеть не смогли.

Настоящее время

За всеми перспективными исследованиями, как обычно стоят военные. В случае с гиперзвуковыми скоростями, это тоже имеет место. Сейчас исследования ведутся в основном в направлении космических аппаратов, гиперзвуковых крылатых ракет и так называемых гиперзвуковых боевых блоках. Теперь уже речь идет о «настоящем» гиперзвуке, полетах в атмосфере.Обратите внимание, работы по гиперзвуковым скоростям были в активной фазе в 60-70 годах, потом все проекты были закрыты. Вернулись к скоростям выше 5 М только на рубеже 2000-х годов. Когда технологии позволили создавать эффективные прямоточные двигатели для гиперзвуковых полетов.

В 2001 первый полет совершил беспилотный летательный аппарат с прямоточным двигателем

Boeing X-43. Уже в 2014 он разогнался до скорости в 9,6 М (11 200 км/ч). Хотя проектировался X-43 для скоростей в 7 раз выше скорости звука. При этом рекорд был поставлен не в космосе, а на высоте всего 33 500 метров.

X-43 на фото выглядит маленьким черным треугольником прикрепленным к разгонной ракете

В 2009 году начались испытания прямоточного двигателя для крылатой ракеты компании Boeing X-51A Waverider. В 2013 году аппарат X-51A разогнался до гиперзвуковой скорости - 5,1 М на высоте 21 000 метров.

Аналогичные проекты на разных стадиях осуществляют и другие страны: Германия (SHEFEX), Великобритания (Skylon), Россия («Холод» и «Игла»), Китай (WU-14) и даже Индия (Брамос), Австралия (ScramSpace) и Бразилия (14-X).

ГЛЛ-31 проекта «Холод»

Интересный проект летательного аппарата для полета с гиперзвуковой скоростью в атмосфере, американский Falcon HTV-2, считается провальным. Предположительно, Falcon смог разогнаться до огромной для атмосферы скорости - 23 М. Но только предположительно, так как все экспериментальные аппараты просто напросто сгорели.

Все перечисленные летательные аппараты (кроме Skylon) не могут самостоятельно набрать необходимую для работы прямоточного двигателя скорость и используют разные ускорители. Но Skylon пока только проект не сделавший пока ни единого испытательного полета.

Далекое будущее гиперзвука

Существуют и гражданские проекты гиперзвуковых самолетов для перевозки пассажиров. Это европейские SpaceLiner с одним типом двигателя и ZEHST который должен использовать целых 3 типа двигателя на разных режимах полета. Также над своими проектами работают и другие страны.

Такие лайнеры предположительно смогут доставить пассажиров из Лондона в Нью-Йорк всего лишь за час. Полетать на таких самолетах мы сможем не раньше 40-х, 50-х годов 21 века. А пока гиперзвуковые скорости остаются уделом военных либо космических аппаратов.


© 2024
newmagazineroom.ru - Бухгалтерская отчетность. УНВД. Зарплата и кадры. Валютные операции. Уплата налогов. НДС. Страховые взносы