13.01.2022

Презентация на тему "шкала электромагнитных волн". Шкала электромагнитных излучений


ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ Ученица 11 класса Егян Ани

Вся информация от звезд, туманностей, галактик и других астрономических объектов поступает в виде электромагнитного излучения. Электромагнитное излучение

Длины электромагнитных волн радиодиапазона заключены в пределах от 10 км до 0,001 м (1 мм). Диапазон от 1 мм до видимого излучения называется инфракрасным диапазоном. Электромагнитные волны с длиной волны короче 390 нм называются ультрафиолетовыми волнами. Наконец, в самой коротковолновой части спектра лежит излучение рентгеновского и гамма-диапазона.

Интенсивность излучения

Всякое излучение можно рассматривать как поток квантов – фотонов, распространяющихся со скоростью света, равной c = 299 792 458 м/с. Скорость света связана с длиной и частотой волны соотношением c = λ ∙ ν

Энергию квантов света E можно найти, зная его частоту: E = h ν , где h – постоянная Планка, равная h ≈ 6,626∙10 –34 Дж∙с. Энергия квантов измеряется в джоулях или электрон-вольтах: 1 эВ = 1,6∙10 –19 Дж. Кванту с энергией в 1 эВ соответствует длина волны λ = 1240 нм. Глаз человека воспринимает излучение, длина волны которого находится в промежутке от λ = 390 нм (фиолетовый свет) до λ = 760 нм (красный свет). Это – видимый диапазон.

Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и g-излучение. Со всеми этими излучениями, кроме g -излучения, вы уже знакомы. Самое коротковолновое g -излучение испускают атомные ядра. Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны в конечном счете по их действию на заряженные частицы. Границы между отдельными областями шкалы излучений весьма условны. Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.

Радиоволны

Радиоволны Длина волны(м) 10 5 - 10 -3 Частота(Гц) 3 ·10 3 - 3 ·10 11 Энергия(ЭВ) 1,24 ·10-10 - 1,24 · 10 -2 Источник Колебательный контур Макроскопические вибраторы Приемник Искры в зазоре приемного вибратора Свечение газоразрядной трубки, когерера История открытия Феддерсен (1862 г.), Герц (1887 г.), Попов, Лебедев, Риги Применение Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация Короткие - радиолюбительская связь УКВ - космическая радио связь ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение ММВ - радиолокация

Инфракрасное излучение Длина волны(м) 2 ·10 -3 - 7,6· 10 -7 Частота(Гц) 3 ·10 11 - 3 ·10 14 Энергия(ЭВ) 1,24· 10 -2 – 1,65 Источник Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания Человек излучает электромагнитные волны длиной 9 10 -6 м Приемник Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки История открытия Рубенс и Никольс (1896 г.), Применение В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,

Рентгеновское излучение

Длина волны менее 0,01 нм. Самое высокоэнергетическое излучение. Имеет огромную проникающую способность, оказывает сильное биологическое воздействие. Применение: В медицине, производстве (гамма-дефектоскопия). Гамма-излучение

Гамма-излучение зарегистрировано от Солнца, активных ядер галактик, квазаров. Но самое поразительное открытие в гамма- астрономии сделано при регистрации гамма- всплесков. Распределение гамма - вспышек на небесной сфере

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные). Вывод

Слайд 2

Шкала электромагнитных волн Скорость света Спектр электромагнитных волн Радиоволны Виды радиоволн Виды радиоволн (продолжение) Инфракрасное излучение Световое излучение Рентгеновское излучение Гамма-излучение Вывод

Слайд 3

Вся информация от звезд, туманностей, галактик и других астрономических объектов поступает в виде электромагнитного излучения. Шкала электромагнитного излучения. По горизонтальной оси отложены: внизу – длина волны в метрах, вверху – частота колебаний в герцах

Слайд 4

Шкала электромагнитных волн

Шкала электромагнитных волн простирается от длинных радиоволн до гамма – лучей. Электромагнитные волны различной длины условно делят на диапазоны по различным признакам (способу получения, способу регистрации, характеру взаимодействия с веществом).

Слайд 5

Скорость света

Всякое излучение можно рассматривать как поток квантов – фотонов, распространяющихся со скоростью света, равной c = 299 792 458 м/с. Скорость света связана с длиной и частотой волны соотношением c = λ ∙ ν

Слайд 6

Спектр электромагнитных волн

Спектр электромагнитного излучения в порядке увеличения частоты составляют: 1) Радиоволны 2) Инфракрасное излучение 3) Световое излучение 4) Рентгеновское излучение 5) Гамма -излучение Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

Слайд 7

Радиоволны

Радиоволны представляют собой электромагнитные волны, длины которых превосходят 0.1мм

Слайд 8

Виды радиоволн

1. Сверхдлинные волны с длиной волны больше 10км 2. Длинные волны в интервале длин от10км до 1км 3. Средние волны в интервале длин от1км до 100м

Слайд 9

Виды радиоволн (продолжение)

4. Короткие волны в интервале длин волн от 100м до 10м 5. Ультракороткие волны с длиной волны меньше 10м

Слайд 10

Инфракрасное излучение

Инфракрасное излучение – это электромагнитные волны, которые испускает любое нагретое тело, даже если оно не светится. Инфракрасные волны также тепловые волны, т.к. многие источники этих волн вызывают заметное нагревание окружающих тел.

Слайд 11

Световое излучение

Световое излучение - поток лучистой энергии из инфракрасной, видимой и ультрафиолетовой области спектра, действует в течение нескольких секунд, источником является светящаяся область взрыва.

Слайд 12

Рентгеновское излучение

Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов. Применение: медицина, физика, химия, биология, техника, криминалистика, искусствоведение

Слайд 13

Гамма-излучение

Особенность: ярко выраженные корпускулярные свойства. Гамма излучение является следствием явлений, происходящих внутри атомных ядер, а также в результате ядерных реакций.

Слайд 14

Вывод

По мере уменьшения длины волны проявляются и существенные качественные различия электромагнитных волн. Излучения различных длин волн отличаются друг от друга по способу их получения и методом регистрации, то есть по характеру взаимодействия с веществами.

Посмотреть все слайды

Данная презентация помогает учителю более наглядно провести урок -лекцию в 11 классе по физике при изучениии темы "Излучения и спектры". Знакомит учащихся с различными видами спектров, спектральным анализом, шкалой электромагнитных излучений.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Излучение и с п е к т р ы Казанцева Т.Р. учитель физики высшей категории МКОУ Луговской СОШ Зонального района Алтайского края Урок – лекция 11 класс

Всё, что видим мы, - видимость только одна, Далеко от поверхности мира до дна. Полагай несущественным явное в мире, Ибо тайная сущность вещей не видна. Шекспир

1. Познакомить учащихся с различными видами излучений, их источниками. 2. Показать разные виды спектров, их практическое использование. 3. Шкала электромагнитный излучений. Зависимость свойств излучений от частоты, длины волны. Цели урока:

Источники света Холодные Горячие электролюминесценция фотолюминесценция катодолюминесценция лампы дневного света газоразрядные трубки огни святого Эльма полярные сияния свечение экранов плазменных телевизоров фосфор краски свечение экранов телевизо ров с ЭЛТ некоторые глубоководные рыбы микроорганизмы Солнце лампа накаливания пламя светлячки трупные газы тепловые х емилюминесценция

Это излучение нагретых тел. Тепловое излучение, согласно Максвеллу, обусловлено колебаниями электрических зарядов в молекулах вещества, из которых состоит тело. Тепловое излучение

Электролюминесценция При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Часть энергии идёт на возбуждение атомов. Возбуждённые атомы отдают энергию в виде световых волн.

Катодолюминесценция Свечение твёрдых тел, вызванное бомбардировкой их электронами.

Хемилюминесценция Излучение, сопровождающее некоторые химические реакции. Источник света остаётся холодным.

Сергей Иванович Вавилов - российский физик. Родился 24 марта 1891 г. в Москве Сергей Вавилов в Институте физики и биофизики начал эксперименты по оптике - поглощению и испусканию света элементарными молекулярными системами. Вавиловым были изучены основные закономерности фотолюминесценции. Вавиловым, его сотрудниками и учениками осуществлено практическое применение люминесценции: люминесцентный анализ, люминесцентная микроскопия, создание экономичных люминесцентных источников света, экранов Фотолюминесценция Некоторые тела сами начинают светиться под действием падающего на них излучения. Светящиеся краски, игрушки, лампы дневного света.

Плотность излучаемой энергии нагретыми телами, согласно теории Максвелла, должна увеличиваться при увеличении частоты (при уменьшении длины волны). Однако опыт показывает, что при больших частотах (малых длинах волн) она уменьшается. Абсолютно чёрным телом называется тело, которое полностью поглощает падающую на него энергию. В природе абсолютно чёрных тел нет. Наибольшую энергию поглощают сажа и чёрный бархат. Распределение энергии в спектре

Приборы, с помощью которых можно получить чёткий спектр, который затем можно исследовать, называются спектральными приборами. К ним относятся спектроскоп, спектрограф.

Виды спектров 2.Полосатые в газообразном молекулярном состоянии, 1. Линейчатые в газообразном атомарном состоянии, Н Н 2 3.Непрерывные или сплошные тела в твёрдом и жидком состоянии, сильно сжатые газы, высокотемпературная плазма

Сплошной спектр излучают нагретые твёрдые тела. Сплошной спектр, согласно Ньютону, состоит из семи участков - красного, оранжевого, жёлтого, зелёного, голубого, синего и фиолетового цветов. Такой спектр даёт также высокотемпературная плазма. Сплошной спектр

Состоит из отдельных линий. Линейчатые спектры излучают одноатомные разрежённые газы. На рисунке показаны спектры железа, натрия и гелия. Линейчатый спектр

Спектр, состоящий из отдельных полос, называется полосатым спектром. Полосатые спектры излучаются молекулами. Полосатые спектры

Спектры поглощения - спектры, получающиеся при прохождении и поглощении света в веществе. Газ поглощает наиболее интенсивно свет именно тех длин волн, которые сам он испускает в сильно нагретом состоянии. Спектры поглощения

Спектральный анализ Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго определённый набор длин волн. Метод определения химического состава вещества по его спектру. Спектральный анализ применяется для определения химического состава ископаемых руд при добыче полезных ископаемых, для определения химического состава звезд, атмосфер, планет; является основным методом контроля состава вещества в металлургии и машиностроении.

Видимый свет - это электромагнитные волны в интервале частот, воспринимаемых человеческим глазом (4,01014-7,51014 Гц). Длина волн от 760 нм (красный) до 380 нм (фиолетовый). Диапазон видимого света- самый узкий во всем спектре. Длина волны в нем меняется менее чем в два раза. На видимый свет приходится максимум излучения в спектре Солнца. Наши глаза в ходе эволюции адаптировались к его свету и способны воспринимать излучение только в этом узком участке спектра. Марс в видимом излучении Видимый свет

Электромагнитное излучение, невидимое глазом в диапазоне длин волн от 10 до 380 нм Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека – загару. В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами. Ультрафиолетовое излучение

Это невидимое глазом электромагнитное излучение, длины волн которого находятся в диапазоне от 8∙10 –7 до 10 –3 м Фотография головы в инфракрасном излучении Голубые области - более холодные, жёлтые - более тёплые. Области разных цветов отличаются по температуре. Инфракрасное излучение

Вильгельм Конрад Рентген - немецкий физик. Родился 27 марта 1845 г. в городе Леннеп, близ Дюссельдорфа. Рентген был крупнейшим экспериментатором, он провёл множество уникальных для своего времени экспериментов. Наиболее значительным достижением Рентгена было открытие им X-лучей, которые носят теперь его имя. Это открытие Рентгена радикально изменило представления о шкале электромагнитных волн. За фиолетовой границей оптической части спектра и даже за границей ультрафиолетовой области обнаружилась область ещё более коротковолнового электромагнитного излучения, примыкающего далее к гамма-диапазону. Рентгеновские лучи

При прохождении рентгеновского излучения через вещество уменьшается интенсивность излучения за счёт рассеяния и поглощения. Рентгеновские лучи применяются в медицине для диагностики заболеваний и для лечения некоторых заболеваний. Дифракция рентгеновских лучей позволяет исследовать структуру кристаллических твёрдых тел. Рентгеновские лучи используются для контроля структуры изделий, обнаружения дефектов.

Шкала электромагнитных волн включает в себя широкий спектр волн от 10 -13 до 10 4 м. Электромагнитные волны делятся на диапазоны по различным признакам (способу получения, способу регистрации, взаимодействию с веществом) на радио- и микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма-лучи. Несмотря на различие, все электромагнитные волны обладают общими свойствами: они поперечны, их скорость в вакууме равна скорости света, они переносят энергию, отражаются и преломляются на границе раздела сред, оказывают давление на тела, наблюдаются их интерференция, дифракция и поляризация. Шкала электромагнитных волн

Диапазоны волн и источники их излучения

Спасибо за внимание! Домашнее задание: 80, 84-86




Низкочастотные колебания

Длина волны (м)

10 13 - 10 5

Частота (Гц)

3 · 10 -3 - 3 · 10 5

Источник

Реостатный альтернатор, динамомашина,

Вибратор Герца,

Генераторы в электрических сетях (50 Гц)

Машинные генераторы повышенной (промышленной) частоты (200 Гц)

Телефонные сети (5000Гц)

Звуковые генераторы (микрофоны, громкоговорители)

Приемник

Электрические приборы и двигатели

История открытия

Оливер Лодж (1893 г.), Никола Тесла (1983)

Применение

Кино, радиовещание (микрофоны, громкоговорители)


Радиоволны

Длина волны(м)

10 5 - 10 -3

Частота(Гц)

3 · 10 5 - 3 · 10 11

Источник

Колебательный контур

Макроскопические вибраторы

Звёзды, галактики, метагалактики

Приемник

Искры в зазоре приемного вибратора (вибратор Герца)

Свечение газоразрядной трубки, когерера

История открытия

Б. Феддерсен (1862 г.), Г. Герц (1887 г.), А.С. Попов, А.Н. Лебедев

Применение

Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок

Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация

Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация

Короткие - радиолюбительская связь

УКВ - космическая радио связь

ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь

СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение

ММВ - радиолокация


Инфракрасное излучение

Длина волны(м)

2 · 10 -3 - 7,6∙10 -7

Частота (Гц)

3∙10 11 - 3,85∙10 14

Источник

Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания

Человек излучает электромагнитные волны длиной 9 · 10 -6 м

Приемник

Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки

История открытия

У. Гершель (1800 г.), Г. Рубенс и Э. Никольс (1896 г.),

Применение

В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,


Видимое излучение

Длина волны(м)

6,7∙10 -7 - 3,8 ∙10 -7

Частота(Гц)

4∙10 14 - 8 ∙10 14

Источник

Солнце, лампа накаливания, огонь

Приемник

Глаз, фотопластинка, фотоэлементы, термоэлементы

История открытия

М. Меллони

Применение

Зрение

Биологическая жизнь


Ультрафиолетовое излучение

Длина волны(м)

3,8 ∙10 -7 - 3∙10 -9

Частота(Гц)

8 ∙ 10 14 - 3 · 10 16

Источник

Входят в состав солнечного света

Газоразрядные лампы с трубкой из кварца

Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути)

Приемник

Фотоэлементы,

Фотоумножители,

Люминесцентные вещества

История открытия

Иоганн Риттер, Лаймен

Применение

Промышленная электроника и автоматика,

Люминисценнтные лампы,

Текстильное производство

Стерилизация воздуха

Медицина, косметология


Рентгеновское излучение

Длина волны(м)

10 -12 - 10 -8

Частота(Гц)

3∙10 16 - 3 · 10 20

Источник

Электронная рентгеновская трубка (напряжение на аноде – до 100 кВ, катод – накаливаемая нить, излучение – кванты большой энергии)

Солнечная корона

Приемник

Фотопленка,

Свечение некоторых кристаллов

История открытия

В. Рентген, Р. Милликен

Применение

Диагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов)


Гамма - излучение

Длина волны(м)

3,8 · 10 -7 - 3∙10 -9

Частота(Гц)

8∙10 14 - 10 17

Энергия(ЭВ)

9,03 10 3 – 1, 24 10 16 Эв

Источник

Радиоактивные атомные ядра, ядерные реакции, процессы превращения вещества в излучение

Приемник

счетчики

История открытия

Поль Виллар (1900 г.)

Применение

Дефектоскопия

Контроль технологических процессов

Исследование ядерных процессов

Терапия и диагностика в медицине



ОБЩИЕ СВОЙСТВА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ

физическая природа

всех излучений одинакова

все излучения распространяются

в вакууме с одинаковой скоростью,

равной скорости света

все излучения обнаруживают

общие волновые свойства

поляризация

отражение

преломление

дифракция

интерференция


ВЫВОД:

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.


© 2024
newmagazineroom.ru - Бухгалтерская отчетность. УНВД. Зарплата и кадры. Валютные операции. Уплата налогов. НДС. Страховые взносы