27.11.2020

Ненасыщенные полиэфирные смолы. Технические характеристики НПС


Эпихлоргидрин заполняют в реактор из нержавеющей стали с помощью скрученного пара и мешалки и нагревают до 40-50 ° С.

Что лучше использовать полиэфирную смолу или эпоксидную смолу

Постепенно вводится процедура смешивания с диферилолпропаном. После диссипации дифенилолпропана и гомогенного раствора в тонкой струе из добавленного раствора измерительного сосуда с гидроксидом натрия и при 60-70 ° С проводится процесс конденсации 1,5-2 ч.

Все это время ей приходится смешивать вещи. После этого нагрев прибора отключается, вода заполняется во время перемешивания.

После прекращения перемешивания полученную смолу можно выровнять.

Разделение слоев происходит быстрее при 40-50 ° С. Отвержденный водный слой (сверху) отделяют и оставшуюся смолу промывают теплой водой при 40-50 ° С. Количество воды определяют по объему (обычно два, три раза).

Стирка (смешивание, выравнивание, разделение водного слоя) продолжается до полного удаления соли, удаленной из реакции.

Промывку контролируют разложением (промывочной водой) на присутствие хлора и щелочей.

Высушите смолу в одном устройстве. Для этого смолу нагревают до 40-50 ° С, холодильник непосредственно подключается (с вакуумом) и высушивается до тех пор, пока конденсация воды в холодильнике не прекратится, и смола не вспенивается.

Смолу сушат без вакуума при атмосферном давлении и при температуре около 120 ° С.

Смолу высушивают до получения прозрачного образца смолы при 20-25 ° С. Конечную смолу выгружают в алюминиевые контейнеры.

В зависимости от молярного соотношения исходных компонентов конечные продукты могут быть жидкими, вязкими и твердыми.

В связи с тем, что жидкость для стирки (с низкой молекулярной массой) смола производится гораздо проще, чем вязкость (высокая молекулярная масса) сначала получают с весом смолой с низкой молекулярной, который затем сливают с необходимой суммой, рассчитанной difenilol пропана, и таким образом получает требуемый смол с высоким молекулярным весом.

Характеристики эпоксидных смол

Эпоксидные смолы представляют собой жидкие, вязкие или твердые прозрачные термопластичные изделия от светлого до темно-коричневого.

Они легко растворяются в ароматических растворителях, эфирах, ацетоне, но не образуют пленки, потому что они не излечиваются в тонком слое (пленка остается термопластичной).

Эпоксидные смолы находятся в структуре простых полиэфиров, имеющих эпоксидные группы на концах, которые являются высокореактивными (рис.

Когда соединения, содержащие подвижный атом водорода, действуют на эпоксидные смолы, они способны высушиваться с образованием трехмерных нерастворимых и нерастворимых продуктов, обладающих высокими физическими и техническими свойствами.

Таким образом, термореактивность — это не только эпоксидная смола, а ее смеси с отвердителями и катализаторами.

Поскольку эпоксидные смолы заявляли различные вещества: диамины (гексаметилендиамин, метафенилендиамин, полиэтиленполиамин), карбоновые кислоты или их ангидриды (малеиновые, фталевые).

Состав эпоксидных смол

Эпоксидные смолы в смеси с отвержденными отвердителями образуют термореактивные композиции, имеющие ценные свойства:

  • высокая адгезия к поверхности материала, на котором он затвердевает;
  • высокие диэлектрические свойства;
  • высокая механическая прочность;
  • хорошая химическая стойкость и водостойкость;
  • при заживлении, не выделяют летучие продукты и характеризуются низким сокращением (2-2,5%).

Свойства эпоксидных смол

Высокие физические и технические свойства эпоксидных смол, которые отделяют их от многих других смол, определяют структуру их молекул и, в частности, наличие эпоксидной группы.

  1. Количество эпоксидных групп в массовых процентах.

    Эпоксидная группа предполагает эквивалентный общий вес 43.

  2. Эпоксидное число, равное количеству грамм-эквивалентов эпоксидных групп на 100 г смолы.
  3. Эпоксидный эквивалент, соответствующий массе жевательной резинки, в граммах, содержащих 1 г эпоксидных эквивалентов.

Метод определения эпоксидных групп основан на взаимодействии эпоксидных групп с соляной кислотой и образовании хлоргидрина.

В дополнение к содержанию эпоксидных групп в конечных смолах определяют:

  1. летучее содержание при 110 ° С;
  2. содержание хлора;
  3. размягчение или понижение температуры (для твердых ED-смол);
  4. вязкость (для жидких смол, таких как ED-5 и ED-6);
  5. растворимость в ацетоне.

Таблица 1.

Некоторые свойства эпоксидных смол на основе дифенилолпропана.

Полиэфирные смолы. Общая информация.

Внешний вид
Исходные полиэфирные смолы представляют из себя вязкие медоподобные жидкости от светло-желтого до темно-коричневого цвета. При введении небольшого количества отвердителей полиэфирные смолы сначала густеют постепенно превращаясь в студнеообразное состояние, после чего становятся резиноподобными и наконец твердыми, нарастворимыми и неплавкими.

Этот процесс, называемый отверждением, происходит при обычной температуре в течении нескольких часов. В твердом состоянии полиэфирные смолы представляют из себя прочные жесткие материалы, легко окрашиваемые в любые цвета, и чаще всего используются в сочетании со стеклотканями (такие материалы называются — полиэфирные стеклопластики) в качестве конструкционных материалов для производства самых разнообразных изделий.

Главные достоинства
Отвержденные полиэфирные смолы представляют из себя великолепные конструкционные материалы, обладающие высокой прочностью, твердостью, износостойкостью, отличными диэлектрическими свойствами, высокой химической стойкостью, экологической безопасностью в процессе эксплуатации.

Некоторые механические свойства полиэфирных смол, применяемых в сочетании со стеклотканями, приближаются к свойствам конструкционных сталей или даже превышают их.
Технология изготовления изделий из полиэфирных смол проста, безопасна и дешева, т.к полиэфирные смолы отверждаются при комнатной температуре без приложения давления, без выделения летучих и других побочных продуктов с небольшой усадкой. Поэтому для изготовления изделий не требуются ни сложное громоздкое дорогостоящее оборудование, ни тепловая энергия, что позволяет быстро освоить как малотоннажное, так и крупнотоннажное производство изделий.

К вышеперечисленным достоинствам полиэфирных смол необходимо добавить их низкую стоимость, которая в два раза ниже стоимости эпоксидных смол.
Следует отметить, что в настоящее время производство ненасыщенных полиэфирных смол как в нашей стране, так и за рубежом продолжает увеличиваться и эта тенденция сохранится в будущем.

Недостатки
Конечно у полиэфирных смол есть и свои недостатки. Так, часто используемый в качестве растворителя стирол токсичен и огнеопасен.

В настоящее время разработаны марки, не содержащие стирола.
Другим недостатком является — горючесть. Немодифицированные ненасыщенные полиэфирные смолы горят подобно твердым породам дерева. Эта проблема решается путем введения в их состав порошковых наполнителей (трехокиси сурьмы, хлор- и фосфоросодержащих низкомолекулярных органических соединений и др.) или химическим модифицированием путем введения хлорэндиковой, тетрахлорфталевой кислот, а также мономеров: хлорстирола, винилхлоацетата и других хлорсодерщащих соединений.

Состав
По составу ненасыщенные полиэфирные смолы представляют собой многокомпонентную смесь химических веществ различной природы, выполняющих определенные функции.

Основные компоненты из которых состоят полиэфирные смолы и и выполняемые ими функции описаны в таблице:

Полиэфир, являющийся основным компонентом, представляет собой продукт реакции поликонденсации многоатомных спиртов с многоосновными кислотами или ангидридами, содержащих эфирные группы в основной цепи -СО-С.

В качестве многоатомных спиртов чаще всего используют этиленгликоль, диэтиленгликоль, пропиленгликоль, глицерин и дипропиленгликоль. В качестве кислот и ангидридов используются фумаровая кислота, адипиновая кислота, малеиновый ангидрид и фталевый ангидрид. В состоянии готовности к переработке полиэфир имеет невысокую молекулярную массу (порядка 2000), а в процессе формования изделий после введения инициаторов отверждения превращается в полимер с высокой молекулярной массой и трехмерной сетчатой структурой, обуславливающей высокую прочность и химическую стойкость материала.

Второй необходимый компонент это мономер — растворитель. Причем растворитель играет двоякую роль. С одной стороны он снижает вязкость смолы до уровня, необходимого для переработки, т.к.

сам полиэфир слишком густой. С другой стороны мономер — растворитель активно участвует в сополимеризации с полиэфиром, обеспечивая приемлемую скорость полимеризации и высокую глубину отверждения материала (сами по себе полиэфиры отверждаются очень медленно).

Чаще всего для этой цели используется стирол, который хорошо растворим, очень эффективен и дешев, однако имеет недостаток — токсичность и горючесть.
Компонентом, необходимым для перевода полиэфирных смол из жидкого состояния в твердое, является инициатор отверждения — перекись или гидроперекись.

При взаимодействии с другим необходимым компонентом — ускорителем инициатор распадается на свободные радикалы, которые возбуждают цепной процесс полимеризации, превращая молекулы полиэфира также в свободные радикалы. Цепная реакция протекает с большой скоростью и с выделением большого количества тепла.

Инициатор вводится в состав смолы непосредственно перед формованием. После введения инициатора заполнение формы должно быть осуществлено за 12-24 часа, т.к. по истечении этого времени смола превратится в студнеообразное состояние.
Четвертым компонентом ненасыщеных полиэфирных смол является ускоритель (катализатор) отверждения, который как было сказано выше нужен для реакции с инициатором, в результате которой образуются свободные радикалы, инициирующие процесс полимеризации.

Ускоритель может вводиться в состав полиэфиров как на стадии изготовления, так и непосредственно при переработке перед введением инициатора. Наиболее эффективными ускорителями для отверждения полиэфиров при комнатной температуре являются соли кобальта, в частности нафтенат и октоат кобальта, выпускаемые под торговыми марками НК и ОК соответственно.
Полимеризацию полиэфирных смол надо не только активировать и ускорять, но иногда и замедлять.

Дело в том, что полиэфирные смолы и без инициаторов и ускорителей сами могут образовывать свободные радикалы и преждевременно полимеризоваться в процессе хранения. Для предотвращения преждевременной полимеризации нужен ингибитор (замедлитель) отверждения. Механизм его действия заключается во взаимодействии с периодически возникающими свободными радикалами с образованием малоактивных радикалов или соединений нерадикальной природы.

В качестве ингибиторов применят фенол, трикрезол, хиноны и некоторые органические кислоты. Ингибиторы вводятся в состав полиэфиров в весьма небольшом количестве (порядка 0, 02-0, 05%) на стадии изготовления.
Компоненты, описанные выше, являются основными из которых собственно состоят полиэфирные смолы как связующие.

Однако на практике при формовании изделий в полиэфиры вводится огромное количество добавок, несущих самые разнообразные функции и модифицирующих свойства исходных смол.

К таким компонентам относятся порошковые наполнители, вводимые с целью удешевления, снижения усадки, повышения огнестойкости; армирующие наполнители (стеклоткани), применяемые с целью повышения механических свойств, красители, пластификаторы, стабилизаторы и другие.

Полиэфирная смола

Полиэфирные смолы, Ненасыщенные олигомеры (олиго), например полималеины и олигоэфирные акрилаты. Смеси этих растворов и их олигоэфиров, сополимеризующих мономерные (стирол, метилметакрилат, диилфталат и т. Д.), Также обычно называют полиэфирными смолами.

Подробнее …

Группа компаний «Композит» является официальным дистрибьютором компании Ashland на территории России и Беларуси.

Ashland является мировым лидером в производстве полиэфирных смол и гелькоутов.

Производство, свойства и процедуры для обработки полиэфирных смол

В нашем ассортименте широкий ассортимент полиэфирных смол для различных целей. Для получения дополнительной информации см. Соответствующие разделы.

Типы смол по областям применения

  1. Смолы для общего использования
  2. Смолы с низким содержанием стирола
  3. Смолы на основе DCPD
  4. Смолы на основе ПЭТ
  5. Химически стойкие полиэфирные смолы на основе изофталевой кислоты
  6. Огнестойкие смолы
  7. Смола для полимерного бетона, искусственного камня, твердой поверхности
  8. Специальные смолы
  9. Смолы для изготовления матриц и аксессуаров

Маркировка полиэфирных смол Ashland

Для лучшего удовлетворения различных потребностей клиентов полиэфирные смолы представляют собой ряд различных модификаций.

Ряд полиэфирных смол представляет собой предварительно ускоренное состояние с добавлением тиксотропных добавок.

Следующая информация поможет вам понять маркировку полиэфирных смол.

Пример маркировки: М 105 ТБ — полифосфатная смола на основе ортофталевой кислоты с низким уровнем выбросов стирола, тиксотропная и предварительно ускоренная.

Первая буква обозначает группу полиэфирных смол

Предварительно ускоренная полиэфирная смола (отверждение пероксидом бензола)
F = Огнестойкая полиэфирная смола
G = полиэфирная смола для общего использования
К = химически стойкая полиэфирная смола
M = полиэфирная смола с низким содержанием стирола (LSE)
= полиэфирная смола со специальными свойствами
Q = легкая тиксотропная полиэфирная смола

Цифры показывают тип полиэфира в полиэфирной смоле

100-299 = полиэфирные смолы на ортофальной основе с температурой тепловой деформации ниже 80 ° C
300-399 = полиэфирные смолы на ортофальной основе с температурой тепловой деформации выше 80 ° C
500-599 = полиэфирные смолы на изофталевых и терефталевых субстратах
700-899 = полиэфирная смола на основе специального сырья
900-999 = Разработанные марки полиэфирных смол

Последняя буква указывает на свойства полиэфирной смолы

A, B, C, D = предварительно ускоренная полиэфирная смола, модифицированное время гелеобразования
Е = предварительно ускоренная полиэфирная смола
F = полиэфирная смола с наполнителем и / или цветная
H = полиэфирная смола с высокой вязкостью
L = стабилизированная полиэфирная смола
P = полиэфирная смола с пониженным содержанием стирола
R = умеренно прочная полиэфирная смола
= полиэфирная смола с низкой вязкостью
T = тиксотропная полиэфирная смола
U = полиэфирная смола для теплого климата
= слегка модифицированная полиэфирная смола
W = белая полиэфирная смола
X = увеличить предопределенные свойства
Y = быстрополимеризующаяся смола
с = полиэфирная смола с добавлением LP

Используя эту информацию, вы можете оценить свойства полиэфирных смол и предвидеть удобство использования в зависимости от цели продукта, его размера, условий эксплуатации, сметных затрат.

Хранение смолы

Максимальный срок хранения смолы составляет от 3 до 12 месяцев (в зависимости от типа) от даты производства при температуре не выше 25 ° C и при хранении от прямых солнечных лучей.

Эпоксидные и полиэфирные смолы являются термореактивными, благодаря такому качеству, она не способны возвращаться в жидкое состояние после застывания. Оба состава изготавливаются в жидком виде, но способны обладать различными свойствами.

Что представляет собой эпоксидная смола?

Смола эпоксидного типа имеет синтетическое происхождение, её не используют в чистом виде, для застывания добавляют специальное средство, то есть отвердитель.

При соединении эпоксидной смолы с отвердителем, получаются прочные и твердые изделия. Смола эпоксидного вида является устойчивой к агрессивным элементам, они способны растворятся при попадании ацетона. Застывшие изделия из эпоксидной смолы отличаются тем, что не выделяют токсические элементы, и усадка при этом является минимальной.

Преимуществами смолы эпоксидного вида являются незначительная усадка, устойчивость к влажности и износу, а также повышенная прочность.

Застывание смолы происходит при температуре от -10 до +200 градусов.

Смола эпоксидного вида может иметь горячее и холодное отверждение. При холодном методе, материал используется в хозяйстве, либо на таких предприятиях, где нет возможности термической обработки.

Полиэфирная смола: производство и работа с ними

Горячий способ применяется для изготовления высокопрочных изделий, которые способны выдерживать большие нагрузки.

Время работы для смолы эпоксидного вида составляет до одного часа, так как затем состав начнет застывать, и станет непригодным для использования.

Применение эпоксидной смолы

Смола эпоксидного вида служит качественным клеевым материалом.

Она способна склеивать дерево, алюминий или сталь, и другие поверхности, которые не имеют пор.

Смолой эпоксидного вида выполняют пропитку стеклоткани, этот материал используется в автомобильном и авиационном производстве, электронике, при изготовлении стеклопластика для строительства.

Эпоксидная смола может служить гидроизоляционным покрытием для пола или стен с высокой влажностью. Покрытия являются устойчивыми к агрессивной среде, поэтому материал можно применять для отделки внешних стен.

После застывания получается прочное и твердое изделие, которое легко поддается шлифовке. Из такого материала изготавливают изделия стеклопластикового вида, их используют в хозяйстве, промышленности, и в качестве декора помещения.

Что представляет собой полиэфирная смола?

Основой смолы такого вида является полиэфир, для застывания материала, используют растворители, ускорители или ингибиторы.

Состав смолы имеет различные свойства. Это зависит от среды применения материала. Застывшие поверхности обрабатывают специальными составами, которые служат защитой от влаги и ультрафиолета. При этом увеличивается прочность покрытия.

Смола полиэфирного вида имеет низкие физико-механические свойства по сравнению с эпоксидным материалом, а также отличается невысокой стоимостью, благодаря этому активно пользуется спросом.

Смола полиэфирного вида используется в строительстве, машиностроении, и химической промышленности. При комбинировании смолы и стекломатериалов, средство застывает, становится прочным. Это позволяет использовать средство для изготовления стеклопластиковых изделий, то есть навесов, крыш, кабинок для душа и другие. Также смолу полиэфирного вида добавляют в состав при изготовлении искусственного камня.

Поверхность, обработанная полиэфирной смолой, нуждается в дополнительном покрытии, для этого используют специальное средство гелькоут.

Тип этого средства выбирается в зависимости от покрытия. При использовании полиэфирной смолы внутри помещения, когда на поверхность не попадает влага и агрессивные вещества, применяют ортофталевые гелькоуты. При повышенной влажности, используют изофтелево-неопентиловые или изофталевые средства. Также имеются гелькоуты, обладающие различными качествами, они могут быть устойчивыми к огню или химическим средствам.

Основные плюсы смолы полиэфирного вида

Смола полиэфирного вида в отличие от эпоксидного состава считается более востребованной.

Также она имеет ряд положительных качеств.

  • Материал отличается твердостью, и устойчивостью к химическому воздействию.
  • Смола обладает диэлектрическими качествами, и устойчивостью к износу.
  • При использовании, материал не выделяет вредных элементов, поэтому является безопасным для окружающей среды и здоровья.

При комбинировании со стекломатериалами, средство обладает повышенной прочностью, даже превышающую сталь.

Для застывания не требуется специальных условий, процесс происходит при обычной температуре.

В отличие от эпоксидного материала, полиэфирная смола имеет низкую стоимость, поэтому покрытия обходиться дешевле. В смоле полиэфирного вида уже запущена реакция застывания, поэтому если материал старый, то он может иметь твердый вид, и является непригодным для работы.

Работы со смолой полиэфирного вида выполняются легче, и стоимость материала позволяет сэкономить на расходах.

Но чтобы получить более прочную поверхность или качественное склеивание, используют эпоксидный материал.

Отличия полиэфирной и эпоксидной смолы, что лучше?

Каждый материал обладает рядом преимуществ, и выбор зависит от назначения используемого средства, то есть в каких условиях оно будет наноситься, также немаловажную роль играет тип поверхности.

Смола эпоксидного вида имеет стоимость выше, чем полиэфирный материал, но она является более прочной. Клеевое свойство эпоксидной смолы превышает любой материал по прочности, это средство надежно соединяет различные поверхности. В отличие от полиэфирной смолы, эпоксидный состав имеет меньшую усадку, обладает высокими физическими и механическими свойствами, меньше пропускают влажность, являются устойчивыми к износу.

Но в отличие от полиэфирного состава, эпоксидная смола медленнее застывает, это приводит к замедлению изготовления различных изделий, например, стеклопластика.

Также для работы с эпоксидной смолой необходимо наличие опыта или аккуратное обращение, дальнейшая обработка материала выполняется сложнее.

При экзотермическом отвержении, во время повышения температуры, материал способен потерять вязкость, это придает сложность в работе. В основном смола эпоксидного вида применяется в виде клея, так как имеет высокие клеевые качества в отличие от полиэфирного материала. В остальных случаях лучше работать со смолой полиэфирного вида, это позволит значительно сократить расходы, и упростить работу.

При использовании смолы эпоксидного вида, необходимо защитить руки перчатками, а органы дыхания респиратором, чтобы при использовании отвердителей, не получить ожоги.

Для работы со смолой полиэфирного вида не требуется специальных знаний и опыта, материал является легким в применении, не выделяет токсических элементов, и отличается невысокой стоимостью.

Полиэфирную смолу можно использовать для обработки различных поверхностей, но покрытие нуждается в дополнительной обработке специальным средством. Для склеивания различных материалов смола полиэфирного вида не подходит, лучше использовать эпоксидную смесь. Также для изготовления изделий декоративного вида лучше использовать эпоксидную смолу, она имеет высокие механические показатели, и является более прочной.

Для изготовления состава из полиэфирной смолы, потребуется гораздо меньше катализатора, это также помогает сэкономить.

Застывает полиэфирный состав быстрее, чем эпоксидный материал, в течение трех часов, готовое изделие имеет эластичность или повышенную прочность к изгибу. Основным недостатком полиэфирного материала является его горючесть, за счет содержания в нем стирола.

Полиэфирную смолу нельзя наносить сверху на эпоксидный материал. Если изделие выполнено или залатано смолой эпоксидного вида, то в дальнейшем для реставрации лучше использовать именно её.

Смола полиэфирного вида в отличие от эпоксидного состава может давать значительную усадку, ею необходимо выполнить сразу всю работу за два часа, в противном случае материал застынет.

Как правильно подготовить поверхность для обработки?

Чтобы смола качественно прилегала, поверхность необходимо правильно обработать, такие действия выполняются при использовании эпоксидного и полиэфирного состава.

Вначале производят обезжиривание, для этого используют различные растворители или моющие составы.

На поверхности не должно быть наличие жирных пятен или других загрязнений.

После этого выполняют шлифовку, то есть убирают верхний слой, при незначительной площади, используют наждачную бумагу.

Для поверхностей больших размеров применяют специальные машины для шлифовки. С поверхности убирают пыль с помощью пылесоса.

Во время изготовления стеклопластиковых изделий или при повторном нанесении средства, смолой покрывают предыдущий слой, который не успел полностью застыть, и имеет липкую поверхность.

Итоги

Смолой полиэфирного вида работать гораздо проще, этот материал помогает сэкономить на расходах, так как имеет невысокую стоимость, он быстро застывает, и не нуждается в сложной обработке.

Смола эпоксидного вида отличается высокой прочностью, клеевыми способностями, используется при отливе отдельных изделий.

При работе с ней, необходимо соблюдать аккуратность, дальнейшая обработка происходит сложнее. Во время проведения работ с такими составами, необходимо защитить руки и органы дыхания специальными средствами.

Общие требования
Все работы со смолой необходимо проводить в помещении, оборудованном приточно-вытяжной вентиляцией, при температуре 18-25ºС и влажностью не более 65%.

Снижение температуры ниже 18ºС недопустимо.
Все материалы перед применением должны быть выдержаны в условиях производственного помещения(при комнатной температуре) не менее 2-х суток.
Перед работой рекомендуется провести тест на небольшом количестве смолы.
ВНИМАНИЕ! Смешивание ускорителя и отвердителя в чистом виде может привести к взрыву или возгоранию!!!
Необходимо сначала тщательно смешать ускоритель со смолой, и только потом добавлять отвердитель!!!
Порядок работы
1.

Первоначально в смолу добавляем ускоритель кобальт Со (6%), он имеет темную окраску, в количестве 2% (20гр. на 1 кг смолы), тщательно размешиваем до однородного состояния.

В таком состоянии смола может храниться до 6 месяцев, сохраняя свои свойства, но лучше смешивать смолу и ускоритель перед применением.

2. Отвердитель, прозрачная жидкость, добавляем прямо перед использованием (литьем/намазкой), в количестве 2% (на 1 кг смолы 20 грамм).

Не стоит перемешивать смолу излишне энергично, т.к. в нее может попасть множество воздушных пузырьков, которые затем надо будет изгонять из смолы. Перемешивать смолу следует около двух минут, чтобы гарантировать равномерное распределение отвердителя (в противном случае отверждение будет неоднородным).

Время гелеобразования, т.е. время до того момента, когда смола потеряет текучесть, составляет от 7 до 60 минут и зависит от системы отверждения, температуры окружающей среды (чем теплее, тем быстрее), влажности.

Низкая влажность ускоряет время отверждения. Если температура окружающей среды ниже 18ºС, то время застывания может увеличиться. Увеличение количества ускорителя и отвердителя может привести к вспениванию и перегреву состава.
В основном рабочий диапазон лежит в промежутке 30 — 45 минут.
Смола отверджается быстрее, будучи в компактном объеме и медленнее, будучи распределенной по большой поверхности в форме тонкого слоя (вы можете повысить время жизнеспособности смолы, если воспользуетесь неглубокой широкой посудой или кюветами для краски вместо емкостей цилиндрической формы).

Другой способ продлить жизнеспособность — во время перерывов убирать смолу с введенным катализатором в холодильник, поставить емкость на лед или в ведро с холодной водой.

Полимеризация смолы сопровождается нагревом состава до 70ºС, изменением цвета состава.
Смола при застывании может давать усадку до 1,5%. Уменьшение количества ускорителя и отвердителя уменьшает усадку, но увеличивает время полимеризации. Не рекомендуется делать слой толще 5 мм, чтобы не возникало растрескивания.
Если смолой пропитывается стеклоткань или стекломат, то не стоит укладывать за раз более трех слоев.

Необходимо дать смоле встать, но чтобы поверхность была липкая, после чего продолжить укладку стекломатериалов. Толщина конечного изделия зависит от толщины и количества слоев стекломатериала. Для пропитки 1 м² ламината необходимо количество смолы в 2 раза больше поверхностной плотности стекломата или равное поверхностной плотности стеклоткани (в зависимости от того, какой материал вы используете).

Следует учитывать, что смола встает достаточно быстро, поэтому необходимо замешивать за раз только то количество смолы, которое вы успеете выработать за 7-10 мин. Лучше замешать меньше и потом замешать еще, чем выбрасывать невыработанную затвердевшую смолу.

Отверждение смолы в среднем занимает 1 — 3 часа, полная полимеризация смолы происходит в течение 24 часов, это время можно сократить, если изделие поместить в сушильную камеру на 1 час с нагревом до 60ºС.
Полиэфирная смола НЕ является клеем, и не обладает хорошей адгезией практически к любым материалам кроме стекломатериалов

- полиэфирные смолы общего назначения получают этерификацией пропиленгликоля смесью фталевого и малеинового ангидридов. Соотношение фталевого и малеинового ангидридов может колебаться от 2:1 до 1:2. Полученную полиэфирную алкидную смолу смешивают со стиролом в соотношении 2:1. Смолы этого типа имеют широкую область применения: они используются для изготовления поддонов, лодок, деталей душевых стоек, плавательных бассейнов и цистерн для воды.

- эластичные полиэфирные смолы вместо фталевого ангидрида используются линейные двухосновные кислоты (адипиновую или себациновую). Образуется более эластичная и мягкая ненасыщенная полиэфирная смола. Используемые диэтилен- или дипропиленгликоли взамен пропиленгликоля также придают смолам эластичность. Добавление таких полиэфирных смол к жестким смолам общего назначения уменьшает их хрупкость и упрощает переработку. Этот эффект используется в производстве литых полиэфирных пуговиц. Такие смолы часто используют для декоративного литья в мебельной промышленности и при изготовлении рам для картин. Для этого в эластичные смолы вводят целлюлозные наполнители (например, растертую ореховую скорлупу) и отливают их в формы из силиконовой резины. Прекрасное воспроизведение резьбы по дереву может быть достигнуто при использовании форм из силиконовой резины, отлитых непосредственно по оригинальной резьбе.

- упругие полиэфирные смолы занимают промежуточное положение между жесткими смолами общего назначения и эластичными. Их используют для изготовления изделий, устойчивых к ударным нагрузкам, например игральных шаров, защитных шлемов, ограждений, деталей автомобилей и самолетов. Для получения таких смол вместо фталевого ангидрида используют изофталевую кислоту. Процесс ведут в несколько стадий. Сначала реакцией изофталевой кислоты с гликолем получают полиэфирную смолу с низким кислотным числом. Затем добавляют малеи-новый ангидрид и продолжают этерификацию. В результате получают полиэфирные цепи с преимущественным расположением ненасыщенных фрагментов на концах молекул или между блоками, состоящими из гликоль-изофталевого полимера

- полиэфирные смолы с малой усадкой при формовании армированного стекловолокном полиэфира различие в усадке между смолой и стекловолокном приводит к появлению раковин на поверхности изделия. Использование полиэфирных смол с малой усадкой ослабляет этот эффект, и полученные таким образом литые изделия не требуют дополнительного шлифования перед окрашиванием, что является преимуществом при изготовлении деталей автомобилей и бытовых электроприборов. Полиэфирные смолы с малой усадкой включают в себя термопластичные компоненты (полистирол или полиметилметакрилат), которые только частично растворяются в исходной композиции. При отверждении, сопровождаемом изменением фазового состояния системы, происходит образование микропустот, компенсирующих обычную усадку полимерной смолы.


- полиэфирные смолы, устойчивые к атмосферным воздействиям, не должны желтеть при воздействии солнечных лучей, для чего в его состав вводят поглотители ультрафиолетового излучения. Стирол может быть заменен метилметакрилатом, но только частично, ибо метилметакрилат плохо взаимодействует с двойными связями фумаровой кислоты, входящей в состав полиэфирной смолы. Смолы этого типа используют при изготовлении покрытий, наружных панелей и крыш фонарей.

- химически стойкие полиэфирные смолы сложноэфирные группы легко гидролизуются щелочами, вследствие чего неустойчивость полиэфирных смол к щелочам является их принципиальным недостатком. Увеличение углеродного скелета исходного гликоля приводит к уменьшению доли эфирных связей в смоле. Так, смолы, содержащие «бисгликоль» (продукт взаимодействия бисфенола А с окисью пропилена) или гидрированный бисфенол имеют значительно меньшее число эфирных связей, чем соответствующая смола общего назначения. Такие смолы используют в производстве деталей химического оборудования - вытяжных колпаков или шкафов, корпусов химических реакторов и емкостей, а также трубопроводов.

- огнестойкие полиэфирные смолы увеличение устойчивости смолы к воспламенению и горению достигается при использовании вместо фталевого ангидрида галогенированных двухосновных кислот, например тетрафторфталевой, тетрабромфталевой и «хлорэндиковой». Дальнейшее повышение огнестойкости достигается введением в смолу различных ингибиторов горения, таких, как эфиры фосфорной кислоты и окись сурьмы. Огнестойкие полиэфирные смолы используются при производстве вытяжных колпаков, деталей электрического оборудования, строительных панелей, а также для изготовления корпусов некоторых видов военно-морских судов.

- смолы специального назначения . Например, использование триаллилизоцианурата вместо стирола значительно улучшает теплостойкость смол. Специальные смолы могут быть получены отверждением с помощью УФ-излучения, для чего в них вводят такие светочувствительные агенты, как бензоин или его простые эфиры.

Эпоксидные смолы - олигомеры, содержащие эпоксидные группы и способные под действием отвердителей образовывать сшитые полимеры. Наиболее распространенные эпоксидные смолы - продукты поликонденсации эпихлоргидрина с фенолами, чаще всего - с бисфенолом А.

n может достигать 25, но чаще всего встречаются эпоксидные смолы с количеством эпоксидных групп меньше 10. Чем больше степень полимеризации, тем гуще смола. Чем меньше номер, указанный на смоле, тем больше эпоксидных групп в составе смолы.

Особенности эпоксидных полимеров:

ü возможность получения их в жидком и твёрдом состоянии,

ü отсутствие летучих веществ при отверждении,

ü способность отверждаться в широком температурном интервале,

ü незначительная усадка,

ü нетоксичность в отверждённом состоянии,

ü высокие значениями адгезионной и когезионной прочности,

ü химическая стойкость.

Впервые эпоксидная смола была получена французским химиком Кастаном в 1936 году. Эпоксидную смолу получают поликонденсацией эпихлоргидрина с различными органическими соединениями: от фенола до пищевых масел (эпоксидирование). Ценные сорта эпоксидных смол получают каталитическим окислением непредельных соединений.

Для применения смолы нужен отвердитель. Отвердителем может быть полифункциональный амин или ангидрид, иногда кислоты. Также применяют катализаторы отверждения. После смешения с отвердителем эпоксидная смола может быть отверждена - переведена в твердое неплавкое и нерастворимое состояние. Отвердители бывают двух видов: холодного отверждения и горячего отверждения. Если это полиэтиленполиамин (ПЭПА), то смола отвердеет за сутки при комнатной температуре. Ангидридные отвердители требуют 10 часов времени и нагрева до 180 °С в термокамере.

Реакция отверждения ЭС - экзотермическая. Скорость, с которой смола отверждается, зависит от температуры смеси. Чем выше температура, тем быстрее реакция. Скорость ее удваивается при повышении температуры на 10° С и наоборот. Все возможности повлиять на скорость отверджения сводятся к этому основному правилу. Время полимеризации помимо температуры зависит и от отношения площади к массе смолы. К примеру, если 100 г смеси смолы с отвердителем обращаются в твердое состояние за 15 минут при исходной температуре в 25°С, то эти 100 г, равномерно размазанные по площади в 1 м2, полимеризуются более чем за два часа.

Для того чтобы эпоксидная смола вместе с отвердителем в отвержденном состоянии была более пластична и не ломалась (не трескалась) нужнодо бавлять пластификаторы. Они также как и отвердители бывают разные, но все нацелены на то, чтобы придать смоле пластичные свойства. Наиболее часто используемым пластификатором является дибутилфталат.

Таблица - Некоторые свойства не модифицированных и не наполненных диановых эпоксидных смол.

Наименование характеристики Значение
Плотность при 20 °С, г/см 3 1,16÷1,25
Температура стеклования, °С 60÷180
Теплопроводность, Вт/(м×К) 0,17÷0,19
Удельная теплоёмкость, кДж/(кг К) 0,8÷1,2
Температурный коэф-т линейного расширения, °С -1 (45÷65) 10 -6
Теплостойкость по мартенсу, °С 55÷170
Водопоглощение за 24 ч, % 0,01÷0,1
Прочность, МН/м 2 при растяжении 40÷90
Модуль упругости (при кратковременном действии напряжения), ГН/ м 2 2,5÷3,5
Ударная вязкость, кДж/м 2 5÷25
Относительное удлинение, % 0,5÷6
Диэлектрическая проницаемость при 20°С и 1 МГц 3,5÷5
Удельное объёмное электрическое сопротивление при 20°С, Ом см 10 14 ÷10 16
Тангенс угла диэлектрических потерь при 20°С и 1 МГц 0,01÷0,03
Электрическая прочность при 20°С, МВ/м 15÷35
Влагопроницаемость, кг/(см сек н/м 2) 2,1 10 -16
Коэфф. диффузии воды, см 2 /ч 10 -5 ÷10 -6

Эпоксидно-диановые смолы марок ЭД-22, ЭД-20, ЭД-16, ЭД-10 и ЭД-8, используемые в электротехнической, радиоэлектронной промышленности, авиа-, судо- и машиностроении, в строительстве в качестве компонента заливочных и пропиточных компаундов, клеев, герметиков, связующих для армированных пластиков. Растворы эпоксидных смол марок ЭД-20, ЭД-16, Э-40 и Э-40Р в различных растворителях используются для изготовления эмалей, лаков, шпатлевок и в качестве полуфабриката для производства других эпоксидных смол, заливочных композиций и клеев.

Эпоксидные смолы, модифицированные пластификаторами - смолы марок К-153, К-115, К-168, К-176, К-201, К-293, УП-5-132 и КДЖ-5-20 используются для пропитки, заливки, обволакивания и герметизации деталей и в качестве клеев, электроизоляционных заливочных композиций, изоляционных и защитных покрытий, связующих для стеклопластиков. Композиция марки К-02Т используется для пропитки многослойных намоточных изделий с целью их цементации, повышения влагостойкости и электроизоляционных свойств.

Модифицированные эпоксидные смолы марки ЭПОФОМ используются на различных промышленных и гражданских объектах в качестве антикоррозионных покрытий для защиты металлических и бетонных строительных конструкций и емкостного оборудования от воздействия химически агрессивных сред (особенно кислот, щелочей, нефтепродуктов, промышленных и канализационных стоков), атмосферных осадков и повышенной влажности. Эти смолы также применяются для устройства гидроизоляции и монолитных наливных покрытий бетонных полов, грунтовки и нанесения отделочного слоя. На основе смолы марки ЭПОФОМ получают заливочные и пропиточные композиции с высоким содержанием армирующих тканей и наполнителей, композиционные материалы и износостойкие покрытия. ЭПОФОМ применяется в качестве пропиточной составляющей рукавного материала для ремонта и восстановления трубопроводов канализационных сетей, напорных сетей холодного и горячего водоснабжения без их демонтажа и извлечения труб из грунта (бестраншейным методом).

Композиции марки ЭЗП используются для покрытия емкостей-хранилищ вина, молока и других жидких пищевых продуктов, а также различных видов жидкого топлива (бензина, керосина, мазута и др.).

Фенолоформальдегидные смолы. В 1909 Бэкеланд сообщил о полученном им материале, который он назвал бакелитом. Эта фенолформальдегидная смола была первым синтетическим реактопластом-пластиком, не размягчавшимся при высокой температуре. Проведя реакцию конденсации формальдегида и фенола, он получил полимер, для которого не мог найти растворителя.

Фенолоформальдегидные смолы представляют собой продукты поликонденсации фенолов или его гомологов (крезолов, ксиленолов) с формальдегидом. В зависимости от соотношения реагирующих веществ и природы катализатора образуются термопластичные (новолаки) или термореактивные (резолы) смолы. Новолачные смолы - преимущественно линейные олигомеры, в молекулах которых фенольные ядра соединены метиленовыми мостиками и почти не содержат метилольных групп (-СН 2 ОН).

Резольные смолы - смесь линейных и разветвленных олигомеров содержащих большое число метилольных групп, способных к дальнейшим превращениям.

Особенности ФФС:

ü по природе - твердые, вязкие вещества, которые поступают на производство в виде порошка;

ü для использования в качестве матрицы плавят, либо растворяют в спиртовом растворителе;

ü механизм отверждения резольных смол состоит из 3-х стадий. На стадии А смола (резол) по физическим свойствам аналогична новолакам, т.к. растворяется и плавится, на стадии В смола (резитол) способна размягчаться при нагревании и набухать в растворителях, на стадии С смола (резит) не плавится и не растворяется;

ü для отверждения новолачных смол необходим отвердитель (обычно вводят уротропин, 6-14% от массы смолы);

ü легко модифицируются и сами модифицируют.

Фенольная смола сначала использовалась как легко формующийся высококачественный изолятор, защищающий от воздействия высоких температур и электрического тока, а затем стала главным материалом стиля Art Deco. Практически первый коммерческий продукт, полученный методом прессования бакелита - торцы каркаса катушки высокого напряжения Фенолоформальдегидная смола (ФФС) производится промышленностью с 1912 г. В России производство литых резитов под наименованием карболит было организованно в 1912÷1914 гг.

Фенолоформальдегидные связующие отверждаются при температурах 160-200°С с применением значительного давления порядка 30-40 МПа и выше. Получаемые в результате полимеры стабильны при длительном нагревании до 200°С, а в течение ограниченного времени способны противостоять действию и более высоких температур несколько суток при температурах 200-250°С, несколько часов при 250-500°С, несколько минут при температурах 500-1000°С. Разложение начинается при температуре около 3000°С.

К недостаткам фенолоформальдегидных смол можно отнести их хрупкость и большую объемную усадку (15-25%) при отверждении, связанную с выделением большого количества летучих веществ. С целью получения материала с малой пористостью необходимо при формовании применять высокие давления.

Смолы фенолоформальдегидные марок СФЖ-3027Б, СФЖ-3027В, СФЖ-3027С и СФЖ-3027Д предназначены для производства теплоизоляционных изделий на основе минеральной ваты, стекловолокна и для других целей. Смола фенолоформальдегидная марки СФЖ-3027С предназначена для производства пенопласта марки ФСП.

На основе ФФС изготавливают разнообразные пластические массы, называемые фенопластами. В состав большинства из них, кроме связующего (смолы), входят и другие компоненты (наполнители, пластификаторы, и др). Они перерабатываются в изделия главным образом методом прессования. Прессматериалы можно готовить на основе как новолачных, так и резольных смол. В зависимости от применяемого наполнителя и степени измельчения все прессматериалы разделяются на четыре типа: порошковые (пресспорошки), волокнистые, крошкообразные и слоистые.

Обозначение пресспорошков чаще всего складывается из буквы К, обозначающей слово композиция, номер смолы, на основе которой изготавливается данный прессматериал, и числа, соответствующего номеру наполнителя. Все пресспорошки по назначению могут быть разделены на три большие группы:

Порошки для технических и бытовых изделий (К-15-2, К-18-2, К-19-2, К-20-2, К-118-2, К-15-25, К-17-25 и т. д.) изготавливаются на основе новолачных смол. Изделия из них не должны подвергаться значительным механическим нагрузкам, действию тока высокого напряжения (более 10 кВ) и температуры выше 160°С.

Порошки для электроизоляционных изделий (К-21 -22, К211 -2, К-211-3, К-211 -4, К-220-21, К-211-34, К-214-2 и т. д.) изготавливаются в большинстве случаев на основе резольных смол. Изделия выдерживают действие тока напряжением до 20 кВ при температуре до 200°С.

Порошки для изделий специального назначения обладают повышенной во до- и теплостойкостью (К-18-42, К-18-53, К-214-42, и др.), повышенной химической стойкостью (К-17-23. К-17-36, К-17-81, К-18-81 и др.), повышенной прочностью на удар (ФКП-1, ФКПМ-10 и др.) и т. п.

Волокнистые прессматериалы готовятся на основе резольных смол и волокнистого наполнителя, применение которого позволяет повысит некоторые механические свойства пластиков, главным образом удельную ударную вязкость.

Волокниты - прессматериалы на основе наполнителя - хлопковой целлюлозы. В настоящее время изготовляют три вида волокнита: волокнит, высокопрочный волокнит и корд волокнит. На основе асбеста и резольной смолы выпускаются прессматериалы марок К-6, К-6-Б (предназначены для изготовления коллекторов) и К-Ф-3, К-Ф-З-М (для тормозных колодок). Прессматериалы, содержащие стеклянное волокно, называются стекловолокнитом. Он обладает более высокой механической прочностью, водо- и теплостойкостью, чем другие волокнистые прессматериалы.

Крошкообразные прессматериалы изготавливаются из резольной смолы и кусков (крошки) различных тканей, бумаги, древесного шпона. Они обладают повышенной удельной ударной вязкостью.

Слоистые прессматериалы выпускаются в виде больших листов, плит, труб, стержней и фасонных изделий. В зависимости от рода наполнителя (основы) листовые слоистые пластики выпускаются следующих видов: текстолит - на хлопчатобумажной ткани, стеклотекстолит - на стеклянной ткани, асботекстолит - на асбестовой ткани, гетинакс - на бумаге, древесно-слоистые пластики - на древесном шпоне.

Эпоксидные и полиэфирные смолы являются термореактивными, благодаря такому качеству, она не способны возвращаться в жидкое состояние после застывания. Оба состава изготавливаются в жидком виде, но способны обладать различными свойствами.

Что представляет собой эпоксидная смола?

Смола эпоксидного типа имеет синтетическое происхождение, её не используют в чистом виде, для застывания добавляют специальное средство, то есть отвердитель.

При соединении эпоксидной смолы с отвердителем, получаются прочные и твердые изделия. Смола эпоксидного вида является устойчивой к агрессивным элементам, они способны растворятся при попадании ацетона. Застывшие изделия из эпоксидной смолы отличаются тем, что не выделяют токсические элементы, и усадка при этом является минимальной.

Преимуществами смолы эпоксидного вида являются незначительная усадка, устойчивость к влажности и износу, а также повышенная прочность. Застывание смолы происходит при температуре от -10 до +200 градусов.

Смола эпоксидного вида может иметь горячее и холодное отверждение. При холодном методе, материал используется в хозяйстве, либо на таких предприятиях, где нет возможности термической обработки. Горячий способ применяется для изготовления высокопрочных изделий, которые способны выдерживать большие нагрузки.

Время работы для смолы эпоксидного вида составляет до одного часа, так как затем состав начнет застывать, и станет непригодным для использования.

Применение эпоксидной смолы

Смола эпоксидного вида служит качественным клеевым материалом. Она способна склеивать дерево, алюминий или сталь, и другие поверхности, которые не имеют пор.

Смолой эпоксидного вида выполняют пропитку стеклоткани, этот материал используется в автомобильном и авиационном производстве, электронике, при изготовлении стеклопластика для строительства. Эпоксидная смола может служить гидроизоляционным покрытием для пола или стен с высокой влажностью. Покрытия являются устойчивыми к агрессивной среде, поэтому материал можно применять для отделки внешних стен.

После застывания получается прочное и твердое изделие, которое легко поддается шлифовке. Из такого материала изготавливают изделия стеклопластикового вида, их используют в хозяйстве, промышленности, и в качестве декора помещения.

Что представляет собой полиэфирная смола?

Основой смолы такого вида является полиэфир, для застывания материала, используют растворители, ускорители или ингибиторы. Состав смолы имеет различные свойства. Это зависит от среды применения материала. Застывшие поверхности обрабатывают специальными составами, которые служат защитой от влаги и ультрафиолета. При этом увеличивается прочность покрытия.

Смола полиэфирного вида имеет низкие физико-механические свойства по сравнению с эпоксидным материалом, а также отличается невысокой стоимостью, благодаря этому активно пользуется спросом.

Смола полиэфирного вида используется в строительстве, машиностроении, и химической промышленности. При комбинировании смолы и стекломатериалов, средство застывает, становится прочным. Это позволяет использовать средство для изготовления стеклопластиковых изделий, то есть навесов, крыш, кабинок для душа и другие. Также смолу полиэфирного вида добавляют в состав при изготовлении искусственного камня.

Поверхность, обработанная полиэфирной смолой, нуждается в дополнительном покрытии, для этого используют специальное средство гелькоут. Тип этого средства выбирается в зависимости от покрытия. При использовании полиэфирной смолы внутри помещения, когда на поверхность не попадает влага и агрессивные вещества, применяют ортофталевые гелькоуты. При повышенной влажности, используют изофтелево-неопентиловые или изофталевые средства. Также имеются гелькоуты, обладающие различными качествами, они могут быть устойчивыми к огню или химическим средствам.

Основные плюсы смолы полиэфирного вида

Смола полиэфирного вида в отличие от эпоксидного состава считается более востребованной. Также она имеет ряд положительных качеств.

  • Материал отличается твердостью, и устойчивостью к химическому воздействию.
  • Смола обладает диэлектрическими качествами, и устойчивостью к износу.
  • При использовании, материал не выделяет вредных элементов, поэтому является безопасным для окружающей среды и здоровья.

При комбинировании со стекломатериалами, средство обладает повышенной прочностью, даже превышающую сталь. Для застывания не требуется специальных условий, процесс происходит при обычной температуре.

В отличие от эпоксидного материала, полиэфирная смола имеет низкую стоимость, поэтому покрытия обходиться дешевле. В смоле полиэфирного вида уже запущена реакция застывания, поэтому если материал старый, то он может иметь твердый вид, и является непригодным для работы.

Работы со смолой полиэфирного вида выполняются легче, и стоимость материала позволяет сэкономить на расходах. Но чтобы получить более прочную поверхность или качественное склеивание, используют эпоксидный материал.

Отличия полиэфирной и эпоксидной смолы, что лучше?

Каждый материал обладает рядом преимуществ, и выбор зависит от назначения используемого средства, то есть в каких условиях оно будет наноситься, также немаловажную роль играет тип поверхности. Смола эпоксидного вида имеет стоимость выше, чем полиэфирный материал, но она является более прочной. Клеевое свойство эпоксидной смолы превышает любой материал по прочности, это средство надежно соединяет различные поверхности. В отличие от полиэфирной смолы, эпоксидный состав имеет меньшую усадку, обладает высокими физическими и механическими свойствами, меньше пропускают влажность, являются устойчивыми к износу.

Но в отличие от полиэфирного состава, эпоксидная смола медленнее застывает, это приводит к замедлению изготовления различных изделий, например, стеклопластика. Также для работы с эпоксидной смолой необходимо наличие опыта или аккуратное обращение, дальнейшая обработка материала выполняется сложнее.

При экзотермическом отвержении, во время повышения температуры, материал способен потерять вязкость, это придает сложность в работе. В основном смола эпоксидного вида применяется в виде клея, так как имеет высокие клеевые качества в отличие от полиэфирного материала. В остальных случаях лучше работать со смолой полиэфирного вида, это позволит значительно сократить расходы, и упростить работу. При использовании смолы эпоксидного вида, необходимо защитить руки перчатками, а органы дыхания респиратором, чтобы при использовании отвердителей, не получить ожоги.

Для работы со смолой полиэфирного вида не требуется специальных знаний и опыта, материал является легким в применении, не выделяет токсических элементов, и отличается невысокой стоимостью. Полиэфирную смолу можно использовать для обработки различных поверхностей, но покрытие нуждается в дополнительной обработке специальным средством. Для склеивания различных материалов смола полиэфирного вида не подходит, лучше использовать эпоксидную смесь. Также для изготовления изделий декоративного вида лучше использовать эпоксидную смолу, она имеет высокие механические показатели, и является более прочной.

Для изготовления состава из полиэфирной смолы, потребуется гораздо меньше катализатора, это также помогает сэкономить. Застывает полиэфирный состав быстрее, чем эпоксидный материал, в течение трех часов, готовое изделие имеет эластичность или повышенную прочность к изгибу. Основным недостатком полиэфирного материала является его горючесть, за счет содержания в нем стирола.

Полиэфирную смолу нельзя наносить сверху на эпоксидный материал. Если изделие выполнено или залатано смолой эпоксидного вида, то в дальнейшем для реставрации лучше использовать именно её. Смола полиэфирного вида в отличие от эпоксидного состава может давать значительную усадку, ею необходимо выполнить сразу всю работу за два часа, в противном случае материал застынет.

Как правильно подготовить поверхность для обработки?

Чтобы смола качественно прилегала, поверхность необходимо правильно обработать, такие действия выполняются при использовании эпоксидного и полиэфирного состава.

Вначале производят обезжиривание, для этого используют различные растворители или моющие составы. На поверхности не должно быть наличие жирных пятен или других загрязнений.

После этого выполняют шлифовку, то есть убирают верхний слой, при незначительной площади, используют наждачную бумагу. Для поверхностей больших размеров применяют специальные машины для шлифовки. С поверхности убирают пыль с помощью пылесоса.

Во время изготовления стеклопластиковых изделий или при повторном нанесении средства, смолой покрывают предыдущий слой, который не успел полностью застыть, и имеет липкую поверхность.

Итоги

Смолой полиэфирного вида работать гораздо проще, этот материал помогает сэкономить на расходах, так как имеет невысокую стоимость, он быстро застывает, и не нуждается в сложной обработке. Смола эпоксидного вида отличается высокой прочностью, клеевыми способностями, используется при отливе отдельных изделий. При работе с ней, необходимо соблюдать аккуратность, дальнейшая обработка происходит сложнее. Во время проведения работ с такими составами, необходимо защитить руки и органы дыхания специальными средствами.

Полиэфирные смолы нашли широкое применение абсолютно во всех сферах производства как серийного и промышленного, так и единичного, кустарного. Частные мастера используют этот полимерный материал в своих эксклюзивных изделиях, в условиях фабричного производства такие быстросохнущие составы высокого качества также незаменимы. Особыми свойствами обладают ненасыщенные разновидности полиэфиров.

Преимущества использования

Ненасыщенные смолы обладают несколькими важными преимуществами:

  • высокой скоростью реакции;
  • простотой эксплуатации;
  • безопасностью для того, кто с ними работает.

Для затвердевания не нужны дополнительные условия. Достаточно даже комнатной температуры. В то же время материал не выделяет никаких веществ в воздух и является экологичным. Готовое изделие оказывается более прочным, ему не страшны прямые солнечные лучи. Работать со смолой этого типа совсем не сложно, она пластична и достаточно быстро затвердевает, поэтому становится возможной работа с мелкими элементами и крупными изделиями, со сложными формами. Приобрести качественный материал данного вида можно, к примеру, на странице http://www.polypark.ru/catalog/polyester-resins .

Сфера применения

Использование ненасыщенных полиэфиров практически ничем не ограничено. Изначально они использовались в армировании для судостроения, но затем стали излюбленным материалом у производителей различной электроники, а постепенно проникли и в спортивную среду, в декораторское искусство.

Ненасыщенная смола может стать прекрасной основой для поверхностей и изделий из искусственного камня. После смешивания с наполнителем натурального происхождения она заливается в специальную форму, где и застывает, превращаясь в монолит. Пройдя этап шлифовки, такая заготовка превращается в идеально ровную и невероятно красивую столешницу, раковину, плитку и так далее. В отличие от других компаундов, ненасыщенная смола придает изделию максимальную прочность, делает его долговечным и выгодным с точки зрения покупки. Аналогичными свойствами обладает и полимербетон. Благодаря сочетанию двух структур он получает уникальные характеристики теплопроводности, гидроизоляции. Если обычные бетонные блоки быстро впитывают влагу и из-за этого разрушаются при промерзании, то добавление смолы ненасыщенного типа решает эту проблему полностью.

Смолы данного вида отличаются и устойчивостью к большинству негативных внешних воздействий. Именно поэтому их активно используют в создании спортивного и туристического снаряжения, в производстве современной сантехники. Полиэфиры ненасыщенного типа не портятся под воздействием химических соединений, они не выгорают, не боятся экстремального перегрева, не трескаются при резком охлаждении, не деформируются даже после длительной эксплуатации в неблагоприятных условиях. Именно поэтому лучшие доски для серфинга и катания имеют в своем составе смолы, как и элитные ванны, качественные душевые поддоны, оригинальные и долговечные раковины.

Насыщенные полиэфирные смолы могут иметь различные составы, высокую или низкую молекулярные массы, быть линейными или разветвленными, твердыми или жидкими, эластичными или жесткими, аморфными или кристаллическими. Такая изменчивость в сочетании с хорошей устойчивостью к воздействию света, влаги, температуры, кислороду и многим другим веществам является причиной того, что насыщенные полиэфирные смолы играют важную роль в качестве пленкообразующих веществ для ЛКМ. Помимо этого, насыщенные полиэфирные смолы используются в различных областях промышленности, таких как производство стеклопластиков, пластмассовых изделий, полиуретанов, искусственного камня и пр.

Свойства НПС и технические характеристики
Синтетические полиэфирные смолы представляют собой синтетические полимеры. Свое название они исторически получили благодаря тому, что первоначально синтезированные полимеры по структуре и свойствам сходны были с природными смолами, такими как шеллак, канифоль и др. Вещества, которые объединены названием «смолы», имеют аморфную структуру и состоят из родственных молекул неодинакового размера и разной структуры (гомологов и изомеров). Смолы — хорошие диэлектрики. Для них типично отсутствие определенной температуры плавления (постепенный переход из твердого состояния в жидкое), нелетучесть, растворимость в органических растворителях, нерастворимость в воде, способность образовывать пленки при испарении растворителя.
Изучение насыщенных полиэфиров началось в 1901 году с получением “глифталевой смолы”, состоящей из глицерина и фталевого ангидрида. Промышленное производство этих алкидных смол началось в 1920-х гг. в США. Дальнейшее развитие производства насыщенных полиэфирных смол для красок и других целей значительно зависит от изучения новых видов сырья.
Насыщенные полиэфирные смолы также иногда называются алкидными смолами, не содержащими жирнокислотных радикалов (oil-free alkyds), поскольку они содержат большинство компонентов, используемых в традиционных алкидных смолах за исключением жирнокислых радикалов.
Структура НПС, используемых в производстве ЛКМ, может быть разветвленная или неразветвленная (линейная). Предпочтительная структура смол в этом случае - аморфная (для достижения лучшей способности к растворению).
Рассмотрим основные характеристики насыщенных полиэфирных смол, применяемых в производстве ЛКМ.

Молекулярная масса. Сополимеры с большой молекулярной массой (10000-30000) обычно имеют линейную структуру. Они образуются из терефталевой и изофталевой кислот, алифатических дикарбоновых кислот и различных диолов. Хорошая растворимость в обычных растворителях достигается подбором соответствующей рецептуры краски. В некоторых случаях (лаки для фольги, полиграфические краски и др.) полиэфиры с большой молекулярной массой используются как пленкообразующие вещества, высыхаемые физическим способом. Однако оптимальные свойства пленок краски получаются только при модификации со структурообразующими смолами. Особые кристаллические полиэфиры с большой молекулярной массой измельчают и используют как порошковые краски, которые в последнее время все чаще находят применение не только в окраске готовых изделий, но и в покрытии рулонного и листового металла.
Для обычных ЛКМ применяются полиэфиры с Мr 1500-4000. Линейные полиэфиры с низкой молекулярной массой могут иметь молекулярную массу до 7000; разветвленные полиэфиры имеют молекулярную массу до 5000. Такие смолы не пригодны для получения красок, сушка которых происходит физическим способом. Их следует рассматривать как преполимеры для реакционных систем со структурообразующими смолами. Классы преполимеров и применение представлены в таблице.

Классификация насыщенных полиэфирных смол, применяемых для производства ЛКМ

Структура Класс Средняя М r Структурообразующее вещество Применение
Линейные, большая молекулярная масса 10000-30000 Меламиновые, бензогуанаминовые смолы Coil / can coating тары, гибкой упаковки)
Линейные, малая молекулярная масса 1000-7000 Меламиновые, блокированные полиизоционатные смолы Coil / can coating (покрытия для рулонного металла/ тары, гибкой упаковки) автомобильные и промышленные краски
Разветвленные, малая молекулярная масса, гидрокси-функциональные 1000-5000 Меламиновые, блокированные/ свободные полиизоционатные смолы Автомобильные/ промышленные краски, порошковые краски
Разветвленные, малая молекулярная масса, карбокси-функциональные 1000-5000 Триглицидилизоцианат, эпоксидные, меламиновые смолы Порошковые покрытия, водорастворимые краски
Малая молекулярная масса, содержит акрилатные группы 1000-5000 Электролучевое и УФ отверждение Бумажные/пластиковые покрытия, полиграфические краски

Источник: Ullmann"s Encyclopedia of Industrial Chemistry, Sixth Edition, 2002

Температура стеклования. Температура стеклования Тg полиэфирных смол может изменяться при помощи подбора соответствующих алифатических сырьевых материалов. Тg непластифицированных ароматических сополиэфиров составляет примерно 70°С, а сополиэфиров, образованных из циклоалифатических гликолей, превышает 100°С. Алифатические полиэфиры с длинными метиленовыми цепями между эфирными группами имеют Тg ниже -100°С. Для процесса койл-коутинга предпочтительнее использование смол с температурой перехода из высокоэластичного состояния в стеклообразное более 45°С. Смола, имеющая температуру перехода более 45°С, имеет неупорядоченную (аморфную) структуру и растворима в большом числе органических растворителей.

Растворимость, кристалличность и совместимость. Растворимость полиэфира в значительной степени определяется природой и количественным соотношением входящих в него мономеров. Полиэфиры с упорядоченной структурой являются кристаллическими. Примерами сильно кристаллизованных полиэфиров являются полиэтиленгликольтерефталат и полибутилентерефталат. Хотя средне или сильно кристаллизованные сополимеры нерастворимы в растворителях, их можно применять в порошковых красках. Слабо кристаллизованные сополимеры растворяются, например, в кетонах и используются главных образом для получения многослойных клеев.
Низкая молекулярная масса и низкая Тg благоприятно отражаются на совместимости полиэфирных смол с другими пленкообазующими веществами (акриловыми, эпоксидными, аминосмолами, сложными эфирами целлюлозы). Не все НПС совместимы между собой. Например, полиэфиры, полученные на основе фталевой кислоты, не всегда совместимы с другими НПС.
В таблице сведены основные характеристики НПС и оценены их преимущества и недостатки как сырья для производства покрытий для рулонного металла.

Основные характеристики насыщенных полиэфирных смол, применяемых для производства покрытий для рулонного металла (coil/can coating)

Общая химическая формула

Свойства Молекулярная масса 1000-25000
Температура стеклования -70°С ÷110 °С
Твердое состояние аморфное или кристаллическое (Т пл 100-250°С)
Структура линейная или разветвленная
Реакционные группы ОН/СООН
Растворимость в аморфных формах сложные эфиры, ароматические УВ, кетоны
Преимущества Большое разнообразие составов Хороший баланс между прочностью и эластичностью Хорошая адгезия к металлу (наивысшая - у высокомолекулярных линейных НПС) Хорошая устойчивость к атмосферным воздействиям
Недостатки Толщина пленки ограничивается примерно 30 мкм В нек. случаях невозможно достичь необходимой степени сшивки в конечном покрытии

Источник: Degussa. Basic resin for coil coating

Технические характеристики выпускаемых смол (спецификация) должны включать в себя такие основные параметры, как вязкость, кислотное число, гидроксильное число, содержание твердого вещества, цвет (по цветовой шкале Гарднера), растворители. Дополнительными параметрами, указываемыми в спецификации, могут быть плотность продукта, температура воспламенения, температура стеклования, молекулярный вес, содержание нелетучих веществ. Также указываются эксплуатационные характеристики и области применения продукта. В спецификации приводятся методы испытаний/стандарты, по которым определялись показатели.
В зависимости от назначения полиэфирных смол, коэффициент кислотности может быть от 0 до 100 мг KOH/г, гидроксидное число - от 0 до 150 мг KOH/г.
Примерные технические характеристики НПС, выпускаемых для койл-коатинга, можно представить следующим образом:

Технические характеристики НПС

Показатель

Значение* Ед. изм.
Вязкость, 23 ºC 1-8 Па·с
Цвет по шкале Гарднера 0-3 -
Содержание тв. в-ва 39-71 %
Кислотное число, 100% 0-12 мг КОН/г
Гидроксильное число 0-120 мг КОН/г
Плотность, 23 ºC 1040-1075 кг/м 3
Температура воспламенения 22-70 и выше °С
Температура стеклования 8-70 °С

* Приведен интервал значений для наиболее известных смол европейского и китайского производства. В спецификации к каждой смоле указывается интервал значений, соответствующий ее характеристикам (3.5-4.5 Па.с, 100-120 мг КОН/г и т.п.)

В зависимости от технологических характеристик линии по покраске металла, а также свойств конечного продукта, которые планируется получить, выбираются смолы, на основе которых выпускаются соответствующие ЛКМ. В частности, принимаются во внимание температура отверждения, совместимость с другими компонентами ЛКМ, устойчивость к воздействиям, в условии которых планируется эксплуатировать изделие из окрашенного рулонного металла.
Характеристики смолы также определяют тип ЛКМ, который будет получен на его основе. Это могут быть грунтовки, эмали, краски, предназначенные для различных этапов покрытия рулонного металла (см. главу, посвященную описанию процесса койл-коатинга).

Структурообразование НПС
НПС, используемые в производстве лакокрасочных материалов, в большинстве случаев должны быть структурированы путем смешения со структурообразующими амино-, меламино-, бензогуанаминовыми или эпоксидными смолами. По этой причине рецептуры смол могут включать в себя следующие химические соединения, сшивающие линейные полимеры: аминогруппы, изоцианатные группы и эпоксидные группы. Выбор группы зависит от конечного применения смол.
Структурообразование также возможно при использовании катализатора. В случае необходимости структурообразования при комнатной температуре, в качестве сшивающего агента используются полиизоционатные смолы.
Аминосмолы, модифицированные формальдегидом (меламиновые, бензогуанаминовые смолы и полимочевина) являются наиболее важными смолами, используемыми для термического отверждения полиэфирных смол, содержащих функциональную гидроксильную группу. В отечественной промышленности материалы на основе амино- и полиэфирных смол носят название олигоэираминоформальдегидные смолы. Соотношение полиэфир/аминосмола обычно между 95:5 и 60:40 (на 100% полиэфира).
Примеры соединений, содержащих эпоксидные группы - дифенилолпропан А эпоксидных смол (например Epikote 828™, Epikote 1001™ and Epikote 1004™ , производитель Shell), гидрогенизованный дифенилолпропан А эпоксисоединений, алифатитеские эпоксисоединения, эпоксидированные алкиды, эпоксидированные масла (например эпоксидированное льняное масло или соевое масло), эпоксидорованные бораты и триглицидил изоцианурат. Соотношение карбоксил: эпоксид обычно между 0,85:1 и 1:0,85. В порошковых покрытиях обычно применяется термическое отверждение карбоксифункциональных полиэфирных смол с эпоксидными смолами (данные смеси получили название гибридных смол).
Примеры соединений, сшивающих линейные полиэфиры, содержащих изоцианатные группы - гексаметилендиизоцианат((HDI), толуилендиизоцианат (TDI), изофорон диизоцианат (IPDI), тетраметилксилен диизоцинат (TMXDI), 3,4 изоцианатметил-1метил-циклогексилизоцианат (IMCI), их димеры и триммеры. Комбинирование полиэфирных и полиизоцианатных смол дает двухкомпонентные полиуретановые краски.
Катализаторы (например, бензилтиметиламминийхлорид или 2-метилимидазол) используются для ускорения реакции термического отверждения. Катализаторы для отверждения полиэфирной смолы - сильные кислоты, такие как сульфокислота, моно- и диалкил кислая соль фосфорной кислоты, бутилфосфат и бутилмалеат.
Содержание катализатора обычно от 0,1 до 5 % (в зависимости от смолы).

Примеры сшивающих агентов, используемых в производстве койлкоутинговых покрытий

Меламиновые смолы
Блокированные полиизоционатные смолы
Эпоксиды

© 2024
newmagazineroom.ru - Бухгалтерская отчетность. УНВД. Зарплата и кадры. Валютные операции. Уплата налогов. НДС. Страховые взносы