15.02.2023

Сборка фланцевых соединений. Фланцевые соединения и крепеж


Предварительное нагружение (затяжка) необходимо для обеспечения герметичности уплотнительного фланцевого соединения в рабочих условиях.

Для герметизации узлов трубопроводов высокого давления, в основном применяют , изготавливаемые по .

Широкому использованию затворов с этими крепежными деталями способствовало следующее: простота и технологичность в изготовлении; надёжные методы расчета и проектирования; многолетние традиции проектирования и изготовления СВД. Недостатки этих затворов —высокая трудоемкость переборок, связанная с длительностью завинчивания соединяемых резьбовых деталей, а также трудность механизации и автоматизации процесса сборки и разборки затвора из-за большого числа шпилек. Стремление к снижению трудоёмкости процесса переборок и его механизации привело к созданию большого многообразия конструкций специальных устройств для предварительного нагружения (затяжки) шпилек или болтов и гаек .

Затяжка крепежа приложением крутящего момента

Основные преимущества способа затяжки крепежных деталей приложением крутящего момента заключаются в его универсальности, простоте и высокой производительности. Недостатки — довольно низкий КПД (лишь 10% всей затрачиваемой на затяжку резьбового соединения работы приходится на создание осевой силы) и возникновение в процессе затяжки в шпильке напряжений кручения, снижающих .

При затяжке соединения момент М кр, прикладываемый к гайке, расходуется на преодоление трения торца гайки о неподвижную опорную поверхность и трения контактирующих поверхностей витко врезьбы гайки и шпильки:

М кр = М т + М р, (1)

где М т — момент трения торца гайки о неподвижную опорную поверхность соединяемых деталей; М р - крутящий момент в резьбе;

М т = f Т Q 3 R Т, (2)

где f Т — коэффициент трения на торце гайки; Q 3 - усилие затяжки; R T - условный радиус трения гайки;

R T = (1/3)(D Г 3 - d шб 3) / (D Г 2 - d шб 2), (3)

где DT — диаметр наружной опорной поверхности гайки; d шб - внутренний диаметр . Крутящий момент в резьбе

M p = Q 3 (P / 2π + f p d 2 / 2), (4)

где Р — шаг резьбы; f р — коэффициент трения в резьбе; d 2 — средний диаметр резьбы. Для резьбовых соединений при смазывании контактирующих поверхностей индустриальным маслом и отсутствии на них электролитических покрытий f Т = 0,12, f p = 0,20.

Затяжка крепежных деталей приложением осевых усилий к стержню болта или шпильки

От недостатков рассмотренного способа свободен способ затяжки резьбовых соединений приложением осевых усилий к стержню шпильки. Метод заключается в растяжении стержня шпильки специальным устройством (гидродомкратом)с последующим свободным завинчиванием гайки для фиксации стержня шпильки в растянутом состоянии.

Особенность метода состоит в том, что после довертывания гайки без приложения крутящего момента ненагруженными остаются элементы соединения: резьба соединения шпилька — гайка и микронеровности сопряжений гайка — шайба и . Вследствие этого после снятия растягивающей шпильку нагрузки происходит нагружение этих элементов и их деформация, в результате которой уменьшается остаточное усилие затяжки.

Измерение степени уменьшения усилия в шпильке при помощи коэффициента разгрузки

Степень уменьшения усилия в шпильке оценивают коэффициентом разгрузки . Коэффициент разгрузки шпилек учитывает уменьшение усилия в шпильках при переносе нагрузки на основную гайку после снятия нагрузки нагружающего устройства и равен отношению усилия, растягивающего шпильку, к остаточному усилию в ней.

Последовательность затяжки крепежных изделий в фланцевом соединении

В связи с тем, что при затяжке практически нагружается одновременно лишь одна или несколько шпилек (группа шпилек) то необходимо соблюдать определенную последовательность при затяжке каждой шпильки или отдельных групп одновременно затягиваемых шпилек. Соблюдение определенной последовательности при затяжке шпилек обусловлено особенностями затяжки группового резьбового соединения, которые состоят в следующем. Затяжка на трубопроводах высокого давления приводит к осевому смещению уплотняемой поверхности фланца или заглушки вследствие уменьшения линейных размеров уплотнительного кольца в осевомирадиальном направлениях, деформации микронеровностей контактирующих поверхностей, к сжатию материалов фланца корпуса сосуда и крышки в зоне уплотнительных поверхностей и к другим деформациям. В результате этих деформаций происходит осевое перемещение плоскости крышки, на которую опираются гайки основного крепежа.

Последовательное уменьшение силы затяжки фланцевого крепежа

Режимы нагружения шпилек фланцевого соединения

Режимы нагружения шпилек фланцевого соединения подразделяют на

  • единовременный и
  • групповой.

Единовременный режим затяжки фланцевого крепежа

Наиболее быстрым, надежным и идеальным с точки зрения обеспечения точности и равномерности нагружения является метод единовременной затяжки всех шпилек соединения. При этом все шпильки соединения нагружаются одновременно усилиями равных текущих значений.

Групповые методы затяжки шпилек или болтов фланцевых соединений

При невозможности создания единовременного режима нагружения используют групповые режимы. При групповом режиме затяжки все шпильки затворов делят на группы одновременно затягиваемых шпилек . Группы шпилек должны быть равномерно распределены по периметру болтовой окружности. Число шпилек в группе должно быть кратно общему числу шпилек фланцевого соединения.

Групповой режим затяжки может быть

  • однообходным и
  • многообходным.

Групповой однообходный режим затяжки крепежных изделий фланцевого соединения

При однообходном режиме нагрузку прикладывают последовательно к каждой группе одновременно затягиваемых шпилек только один раз. При этом нагрузка на шпильки каждой группы изменяется от максимальной (для первой группы) до расчетного усилия затяжки (для последней группы). Преимущество такого режима затяжки: сравнительно малая продолжительность процесса затяжки шпилек, а так же более высокая точность нагружения (по сравнению с многообходным режимом), вследствие большого числа обходов и связанных с этим погрешностей нагружения. Основной недостаток — относительно большое усилие нагружения шпилек первой группы по сравнению с усилием нагружения последней группы (нередко различаются в 8-10 раз ).

В связи с указанными недостатками препятствием для использования однообходного режима затяжки могут являться:

  • недостаточная мощность нагружающего устройства ;
  • недостаточная прочность монтажного хвостовика шпильки , которая должна соответствовать усилию нагружения шпилек первой группы.

Групповой многообходный режим затяжки фланцевых шпилек с гайками

В таком случае применяют многообходный режим групповой затяжки . Этот режим заключается в проведении нескольких, следующих последовательно один за другим обходов нагружения шпилек всех групп соединения. Усилие нагружения шпилек при этих обходах зависит от принятого варианта многообходного режима затяжки. Наиболее распространенный вариант многообходного режима затяжки - пообходно-уравнительный .

Расчет режимов затяжки фланцевых шпилек и гаек

Расчет режимов затяжки шпилек. Единовременный режим затяжки шпилек представляет собой частный случай однообходного группового режима затяжки, при котором число групп шпилек n =1, т.е. все шпильки фланца нагружают одновременно. При однообходном режиме затяжки шпилек текущее усилие нагружения очередной группы шпилек (РД26-01-122-89)

где K z 1 - коэффициент разгрузки шпилек соответствующей группы; Q n - окончательная сила затяжки шпилек последней группы; n = m /i —число групп шпилек в затворе; m — число шпилек в затворе; i — число одновременно действующих нагружающих устройств (гидродомкратов); z —порядковый номер нагружаемой группыш пилек затвора. Окончательная сила Q n , приходящаяся на одну группу шпилек в конце процесса затяжки,

Q n = Q 3 /n, (6)

где Q 3 — суммарная сила затяжки всех шпилек затвора.

Коэффициент относительной податливости уплотнительной прокладки

α =λ 0 / λ Ш (Q ), (7)

λ 0 и λ Ш (Q ) - осевые податливости уплотнительной прокладки и группы шпилек. Текущее значение силы нагружения одной шпильки соответствующей группы

Q z = Q z / i . (8)

Текущее значение силы нагружения одной шпильки первой группы Q" z=1 сравнивают с допускаемой нагрузкой на одну шпильку [Q "]; при этом должно соблюдаться условие

Q" z=1 ≤ [Q "] (9)

Допускаемую нагрузку на одну шпильку [Q "] принимают равной меньшему из двух значений:

1. из условия обеспечения прочности монтажного участка резьбы шпильки

[Q" ] ≤ 0,8 σ 20 ТШ F Ш, (10)

где σ 20 ТШ - предел текучести материала шпильки при температуре 20°С; F Ш -площадь поперечного сечения монтажного участка шпильки;

2. или по рабочему усилию нагружающего устройства (гидродомкрата)

[Q" ] ≤ Q н.у. . (11)

Если не выполняется условие (9), то необходимо рассчитать пообходно-уравнительный режим затяжки шпилек, причем текущее значение усилия нагружения очередной группы шпилек при соответствующем обходе

, (12)

- порядковый номер обхода;

[Q ] = i [Q" ]. (13)

Необходимое число обходов

(14)

где K z2 - коэффициент разгрузки шпилек при пообходно-уравнительном режиме затяжки.

Коэффициент разгрузки шпилек для фланцевых соединений

Различие коэффициента разгрузки фланцевого крепежа для уплотнительных прокладок различного сечения

Максимальные значения коэффициента К n разгрузки шпилек при однообходном режиме затяжки (первой группы крепежа) для уплотнительного кольца соответствующего типа приведены в таблице ниже.

Максимальные значения коэффициента разгрузки фланцевого крепежа при однообходном режиме затяжки для стальной уплотнительной прокладки различного сечения
Вид сечения стальной прокладки Максимальное значение K n
прокладка двухконусная 1,4
прокладка треугольного сечения 1,45

Рис. 1. Зависимость коэффициента ψ z от
числа n групп и порядкового номера z группы
для фланцевого соединения
в виде двухконусного кольца.

С увеличением нагрузки осевые податливости фланцевых деталей уменьшаются , а следовательно, уменьшается и коэффициент разгрузки шпилек . В связи с этим коэффициенты разгрузки шпилек разных групп соединения различны.

Для первой группы шпилек, которую нагружают максимальной нагрузкой, коэффициент разгрузки минимален; для последней группы шпилек коэффициент разгрузки максимален.

Коэффициент разгрузки для группы шпилек соответствующего порядкового номера

K z = ψ z К n , (15)

где ψ z — коэффициент, зависящий от типа уплотнительного кольца, числа групп шпилек в фланцевом соединении и порядкового номера группы (рис.6.35,6.36).

Рис. 1. Зависимость коэффициента ψ z от
числа n групп и порядкового номера z группы
для фланцевого соединения
со стальной уплотнительной прокладкой
треугольного сечения.

Для затворов с уплотнительным кольцом восьмиугольного сечения и с плоской металлической прокладкой принимают

ψ z = 1, так как разность усилий нагружения групп шпилек невелика и, следовательно, коэффициент разгрузки практически постоянен и равен максимальном узначению К n . Коэффициент разгрузки шпилек для первого обхода при пообходно-уравнительном режиме затяжки определяют, как и для однообходного режима затяжки. При последующих обходах коэффициент разгрузки для каждой группы шпилек принимают равным коэффициенту разгрузки для последней группы шпилек первого обхода. Если нагружающее устройство (гидродомкрат)снабжено механизмом для завинчивания гаек с контролем крутящего момента, то при растянутой шпильке этот момент определяют по эмпирической формуле

M Kpz = 7,7.10 6 F ш d p , (16)

где M Kpz - крутящий момент, H·м; F ш - площадь сечения шпильки, м 2 ; d p - диаметр резьбы крепежного изделия, м.

При этом коэффициент разгрузки шпилек (болтов)

K zM = 0,85 (K z - 1) + 1. (17)

Заключение

Применение рассмотренных методов последовательной затяжки фланцевого крепежа обеспечивает равномерность обжима уплотнительной прокладки, а следовательно, надежность и герметичность фланцевого соединения.

Список литературы

  1. Бояршинов С. В. Основы строительной механики машин.. - М. : Машиностроение, 1973. - 456 c.
  2. Герметичность неподвижных соединений гидравлических систем / В. Г. Бабкин, А. А. Зайченко, В. В. Александров и др... - М. : Машиностроение, 1977. - 120 c.

Получив доступ к данной странице, Вы автоматически принимаете

мента, указанного в таблице ниже.
a Приводимая ниже таблица применима к болтам, показанным на рис. А.

2. Таблица моментов затяжки болтов фланцевых соединений
a Если нет особых указаний, при затяжке болтов фланцевых соединений пользуйтесь нор"
мативами, приведенными ниже.

3. Таблица моментов затяжки втулок трубных соединений с уплотнительным кольцом
a Если нет особых указаний, при затяжке втулок разъемов трубопроводов с уплотнительным
кольцом пользуйтесь нормативами, приведенными ниже.

4. Таблица моментов затяжки заглушек с уплотнительным кольцом
a Если нет особых указаний, при затяжке заглушек с уплотнительным кольцом пользуйтесь
нормативами, приведенными ниже.

5. Таблица моментов затяжки для шлангов (с коническим и торцевым уплотнениями)
a Если нет особых указаний, при затяжке шлангов (с коническим и торцевым уплотнениями)
пользуйтесь нормативами, приведенными ниже
a Приведенные ниже моменты применяются при нанесении на резьбу моторного масла.

6. Таблица моментов затяжки для соединений с торцевым уплотнением
a Затягивайте соединения с торцевым уплотнением (накидные гайки) на трубах низкого
давления из плакированной стали, используемые на двигателях, до моментов, представ"
ленных в следующей таблице.
a Прикладывайте следующие моменты затяжки к соединениям с торцевым уплотнением,
предварительно нанеся на их резьбовые участки слой моторного масла.

Для справки: В зависимости от конкретных технических характеристик используются соединения с
торцевым уплотнением, размеры которых указаны в скобках ().

7. Таблица моментов затяжки для двигателей серии 102, 107 и 114 (болты и гайки)
a Если нет особых указаний, при затяжке болтов и гаек с метрической резьбой на

8. Таблица моментов затяжки для двигателей серии 102, 107 и 114 (шарнирные соединения)
a Если нет особых указаний, при затяжке шарнирных соединений с метрической резьбой на
двигателях серии 102, 107 и 114 пользуйтесь нормативами, приведенными ниже.

9. Таблица моментов затяжки для двигателей серии 102, 107 и 114 (Винты с конической
резьбой)
a Если нет особых указаний, при затяжке винтов с конической резьбой (ед. изм: дюйм) на
двигателях серии 102, 107 и 114 пользуйтесь нормативами, приведенными ниже.

Герметичность фланцевого соединения достигается по средством правильной установки прокладки, обеспечением нужного момента затяжки у болтов, а распределение общего напряжения от затяжки должно быть однородным по всей площади фланца.

При правильном моменте затяжки болта появляется возможность реализовать его упругие свойства. Болт должен вести себя как пружина после затяжки, это позволяет ему в полной мере выполнять поставленную задачу.

Динамометрический ключ

Динамометрический ключ – это общее наименование для ручного завинчивающего инструмента и используется для точного закручивания гаек или болтов.

Для закручивания болтовых соединений используют следующие инструменты:

  • Ручной ключ
  • Пневматический гаечный ключ ударного действия
  • Накидной ключ
  • Гидравлический динамометрический ключ
  • Динамометрический гаечный ключ с регулированием предельного момента затяжки
  • Гидравлический болтовой натяжитель

Потеря крутящего момента (Ослабление затяжки)

Потеря крутящего момента возможно в любом типе болтового соединения. Совокупный эффект осадки и ползучести болтов составляет примерно 10% от общей натяжки в первые 24 часа после установки, смещение прокладки, вибрация системы, тепловое расширение и упругое взаимодействие при затяжке болтов также способствует потере крутящего момента.

Когда потеря крутящего момента достигает предела, внутренне давление превышает силу сжатия удерживая прокладку в одном положении и вызывает протечки или разрывы прокладки.

Ключевым фактором сокращения воздействия этих эффектов является правильная установка прокладки. Точная сборка фланцев, параллельная установка прокладки, закрепляемая минимум четырьмя болтами с применением правильного момента натяжки, при условии правильной последовательности монтажа, повышает возможность снижения эксплуатационных затрат и повышение безопасности.

Также важен выбор правильной толщины прокладки. Если прокладка толще необходимого, то это может привести к сползанию прокладки, а это увеличивает шанс потери крутящего момента. К фланцам с поверхностью по стандарту ASME рекомендуют прокладку толщиной 1,6 мм. Более тонкая прокладка будет принимать на себя большую нагрузку, а, значит, и увеличивается внутреннее давление.

Смазка, снижающая трение

Смазка уменьшает трение во время затяжки болтов, уменьшает проблемы при установке болтов и увеличивает их срок работы. Изменение коэффициента трения влияет на уровень предварительной нагрузки, достигнутого в определенный крутящий момент. Высокий уровень трения приводит к образованию меньшего крутящего момента для предварительной нагрузки.

Коэффициент трения, обеспечиваемый используемыми смазочными материалами, необходимо максимально точно рассчитывать, так как это поможет установить нужное значение крутящего момента.

Смазку необходимо наносить на обе поверхности, как закручиваемой гайки, так и резьбы.

Последовательность затяжки фланцев

Сначала необходимо затянуть первый болт, после перейти на 180° и закрутить второй болт, затем перейти на ¼ оборота по кругу (90°) и закрутить третий болт, перейти к болту напротив – четвертый — и затянуть. Продолжать последовательность, пока они не будут закручены все по кругу.

При использовании фланца с четырьмя отверстиями под болты, закручивание болтов осуществляется «крест-накрест».

Очень часто можно услышать, что «прокладка протекает». Данное утверждение не всегда является справедливым. На самом деле, всегда протекает соединение, а прокладка является только одним из его компонентов. Зачастую ожидается, что прокладка способна компенсировать недостатки обработки рабочих поверхностей фланцев и смещение фланцев в результате изменений рабочих температуры и давления, вибрации и т.д. Во многих случаях прокладки на это способны, но только при правильном выборе их типа и материала, а также при соблюдении правильной процедуры установки.

А) Что нужно делать и чего нельзя допускать при установке прокладок

  1. Основной и ответный фланец должны быть одного типа и правильно выровнены. Суммарная несоосность фланцев не должна превышать 0,4 мм.
  2. Недопустимо пытаться стянуть фланцы, находящиеся далеко друг от друга с помощью крепежа. В таких случаях необходимо использование проставок с использованием прокладок с обеих сторон проставки.
  3. Крепеж должен быть подобран таким образом, чтобы его предел упругости не превышался при приложении требуемой нагрузки.
  4. Дополнительная затяжка болтов после того, как соединение с плоской неметаллической прокладкой было подвержено действию повышенных температур, недопустимо. (Прокладка может затвердеть, и дополнительное усилие приведет к ее разрушению).
  5. Необходимо убедиться в отсутствии коррозии на крепеже, так как ее наличие приводит к снижению способности крепежа нести нагрузку.
  6. Необходимо убедиться, что материал прокладки соответствует спецификации для данного соединения.
  7. Необходимо убедиться в том, что на рабочих поверхностях прокладки отсутствуют задиры и царапины, особенно в радиальном направлении.
  8. Материал следует выбирать таким образом, чтобы допустимая нагрузка на гайки была на 20% выше, чем допустимая нагрузка на шпильки или болты. Следует всегда использовать шайбы из того же материала, что и гайки.
  9. При необходимости на резьбу следует наносить смазку, но только равномерным тонким слоем. При использовании крепежа из нержавеющей стали следует убедиться, допустимо ли использование смазки конкретного типа.
  10. Недопустимо повторное использование крепежа и прокладок.
  11. Следует всегда использовать прокладки минимально допустимой толщины.
  12. При вырезании прокладок для плоских фланцев отверстия под болты должны вырезаться до вырезания внешнего и внутреннего диаметра прокладки. В случае, когда отверстия под болты расположены близко к внешнему диаметру прокладки, их вырезание после вырезания прокладки может привести к нарушению ее формы.
  13. Прокладки следует хранить в сухом прохладном месте вдали от источников тепла, влажности, масел и химикатов. Их также следует хранить плоскими в горизонтальном положении (т.е. не подвешивать на крюки).
  14. Следует избегать нанесения смазки на прокладки и рабочие поверхности фланцев.

Б) Затяжка болтов фланцевого соединения.

Соединения следует затягивать равномерно в три или даже четыре прохода, последовательностью «крест-накрест», как показано на рисунке. Имейте в виду, что при данной последовательности затяжка одного из болтов может привести к ослаблению другого (других), поэтому в качестве последней операции рекомендуется дополнительная затяжка всех болтов по кругу. Некоторые соединения необходимо повторно затягивать непосредственно перед вводом в эксплуатацию с целью компенсации релаксации прокладок и крепежа. Ожидаемая релаксация - 10% по моменту в течение первых суток. Также в некоторых случаях при использовании прокладок определенных типов совместно с фланцами некоторых форм присоединительной поверхности на теплообменниках необходимо осуществлять дополнительную затяжку соединения при начальном нагреве теплообменника.

Разумное требование - затягивать сперва не более чем на 80% от максимума, указанного в таблице , подтянуть при необходимости, максимум не превышать ни в коем случае. При этом класс прочности болтов или шпилек обычно применяется не ниже 5.8

В) Устранение неисправностей

НЕИСПРАВНОСТЬ ВОЗМОЖНАЯ ПРИЧИНА СПОСОБ УСТРАНЕНИЯ
Течь возникла сразу при подаче среды в трубопровод Недостаточная или избыточная нагрузка в соединении или нагрузка приложена неравномерно Аккуратно вставьте новую прокладку. Проверьте выравнивание фланцев, их рабочие поверхности и затяните болты в соответствии с описанной процедурой.
Течь возникла после непродолжительной эксплуатации
  1. Снижение нагрузки в соединении в результате релаксации в прокладке или крепеже.
  2. Технологический процесс является циклическим по температуре или давлению.
  1. Проверьте рабочую поверхность фланцев, приложенную к соединению нагрузку, тип прокладки и выбранные материалы.
  2. Используйте удлиненные шпильки или болты совместно со втулками или мощными тарельчатыми пружинными шайбами с тем, чтобы компенсировать колебания.
Течь возникла после нескольких часов или дней эксплуатации Химическое воздействие на прокладку со стороны среды или ее механическое разрушение. Проверьте химическую совместимость материала прокладки со средой данной концентрации при рабочих условиях. Проверьте правльность выбора типа прокладки.

Методика расчета усилий затяжки болтовых соединений фланцев часть II

Мерой нагрузки, требуемой для растягивания болта, является предел текучести. Действуя в его рамках, мы позволяем болту возвращаться к своей первоначальной длине. Перегрузка болта может привести к выходу за рамки предела текучести и фактически снизить нагрузки, действующие на прокладку, вследствие дополнительных напряжений возникших внутри фланцевого соединения. В этом случае продолжение затяжки болтов не обязательно увеличивает нагрузку на прокладку. Скорее всего, вместо предотвращения утечки может произойти разрушение болта.

Болт может потерять свою сжимающую функцию, если он не растянут достаточно и система ослабляется, следуя за его затяжкой. Рекомендуется нагружать болт на 50-60% от предела текучести, для того, чтобы он достаточно растянулся. В ряде случаев, однако, данная величина может быть уменьшена, в частности, если нагрузка может повредить прокладку или согнуть .

Болты производятся из различных материалов, каждый из которых характеризуется индивидуальным пределом текучести. Правильный выбор болта имеет решающее значение для эффективности собранного фланцевого соединения.

Итак, у нас есть динамометрический ключ, для измерения крутящего момента и формула, позволяющая вычислить этот момент исходя из требуемого усилия сжатия прокладки. Вопрос в том, как сильно надо сжать прокладку, чтобы обеспечить герметичность?

Сила, оказывающая давление на прокладку состоит из нескольких составляющих:

Первая составляющая должна сжимать и удерживать прокладку на месте. Нагрузка, создаваемая болтом, сжимает прокладку, и она принимает форму поверхности фланца. Гидростатическое давление, возникающее внутри сосуда или трубопровода, наоборот стремится выдавить прокладку из соединения фланцев приварных . Сжатие прокладки должно быть достаточным, чтобы удерживать ее на месте, компенсируя внутреннее давление. Также требуется некоторая остаточная нагрузка, которая удерживает прокладку, после того как давление спадет.

Усилие, необходимое для создания герметичного соединения, зависит от типа или формы прокладки, жидкости в системе, а также температуры и давления. В стандартах ASME указаны основные факторы, влияющие на прокладку, но всегда лучше получить рекомендации от производителя прокладок.

Уравнение для определения минимального усилия на прокладке выглядит следующим образом:

Wm2 = (π b G) у

Первая комбинация параметров – это эффективная площадь прокладки на основе ее ширины b и нагрузочного диаметра G, который отражает противодействие прокладки. Вывод численных значений для всех типов прокладок и конфигураций сжатия выходит за рамки данной статьи. Тем не менее, эти данные можно найти в документации на котлы или сосуды под давлением.

Следует отметить, что некоторые производители используют более консервативный подход, в частности предлагают максимально приравнять площадь прокладки к уплотнительной поверхности . Тем не менее, вышеуказанная формула позволяет рассчитать минимальные нагрузки.

Для того чтобы получить конечную величину сжатия Wm2 , необходимо умножить все это на коэффициент прокладки y . Чем больше величина коэффициента y , тем большие усилия требуются для того чтобы «осадить» прокладку.


© 2024
newmagazineroom.ru - Бухгалтерская отчетность. УНВД. Зарплата и кадры. Валютные операции. Уплата налогов. НДС. Страховые взносы